
3/11 - Anderson Queue Lock

Note: Friday will be an experimental Zoom lecture. Remote lectures starting next week :(

We assume the processor gives us one special atomic operation, which takes a variable and
increments its current value, and for this to happen atomically
> Don’t need to worry about being preempted in the middle of incrementation

● We have an array of booleans, with a slot in that array for each process
● Start with a True for process 0 and a False everywhere else

○ A True means that if you are in this place in line, you are allowed to move
forward

○ So processes sit and wait until they see a True in their cell

● Need to know how many threads you have
○ Algorithm breaks if the number of threads is 3

■ Why?
● Using macros rather than functions, because we don’t need a return value; simply need

to substitute some expression values
● A set of operations wrapped in a d_step is one deterministic transition, vs atomic which

can be nondeterministic and the scheduler is told not to preempt it
● Two main variables: next (the current thread) and flag (true/false)
● We also keep track of where we expect the next slot to be, which will help us judge some

properties
○ Plus ghost variables that exist only to help us do verification

● active means that you don’t have to explicitly start them up from an init process, they
will be there as soon as the machine starts

● Every process has their own mySlot variable, which are separate across all the
processes

○ What you’re spinning on until you see a True
● Before we return to the start of the loop, tell the next process that it can go -- set next

slot to True

