3/11 - Anderson Queue Lock

Note: Friday will be an experimental Zoom lecture. Remote lectures starting next week :(

We assume the processor gives us one special atomic operation, which takes a variable and
increments its current value, and for this to happen atomically
> Don’t need to worry about being preempted in the middle of incrementation

We have an array of booleans, with a slot in that array for each process
Start with a True for process 0 and a False everywhere else
o A True means that if you are in this place in line, you are allowed to move
forward
o So processes sit and wait until they see a True in their cell

Need to know how many threads you have

o Algorithm breaks if the number of threads is 3

m Why?

Using macros rather than functions, because we don'’t need a return value; simply need
to substitute some expression values
A set of operations wrapped in a d_step is one deterministic transition, vs atomic which
can be nondeterministic and the scheduler is told not to preempt it
Two main variables: next (the current thread) and flag (true/false)
We also keep track of where we expect the next slot to be, which will help us judge some
properties

o Plus ghost variables that exist only to help us do verification
active means that you don’t have to explicitly start them up from an init process, they
will be there as soon as the machine starts
Every process has their own mySlot variable, which are separate across all the
processes

o What you’re spinning on until you see a True
Before we return to the start of the loop, tell the next process that it can go -- set next
slot to True



