
3/2 - Traffic Lights in Forge

Wellness advocates:

● wellness.advocates@cs.brown.edu
● Email them - accessibility, health, wellness, etc.
● Also hiring!

Software verification: Traffic lights

● Four-way intersection with traffic lights north-south and east-west
● What do the states of the system look like?

○ Have to know what color your traffic lights are e.g. (R, R)
■ Light could be off
■ We could have multiple colors on one light

> We are abstracting this out
○ We start off at (R, R), what should the rest of the rest of the transitions be?

■ No event fields, simply a tick forward in the system
● What property do we need to hold for the intersection to be safe?

○ It’s always true that at least one of the lights is red
○ We’d like to never get to a state that could result in an accident
○ Bad things never happen.

● What other property do we want?
○ We’d like everyone to eventually get to move at some point - each of the lights

should at some point transition to green
■ Liveness

○ Good things happen at some point
● What do the counterexample traces look like?

○ For safety: e.g. RR → RG → GG
■ We can find this with search (e.g. depth-first search)
■ Has finite counterexamples

○ For liveness: we need an infinite trace!
■ In a finite graph, we just need to find a cycle
■ Pigeonhole principle

● We only have 9 states, but traces can be arbitrarily long or infinite,
so some states must repeat

■ Has infinite-size counterexamples (it suffices to find a ‘prefix’ of the
violating property, all extensions of which also violate the
counterexample)

● It’s very difficult to check liveness in Forge
○ We have finite states to work with and counterexamples to liveness are infinite

mailto:wellness.advocates@cs.brown.edu

