
Weight - let me sum up

● Directed graph that presents as City → Int → City
● Defining an undirected graph by defining the edges in one way and then unioning it with

the inverse edges.
○ Use let to define a helper expression, and then use it as many times as you

want in the scope of that expression
○ Why is this slow?

■ We’re giving the solver a job - we ask it to find a graph that fits particular
constraints rather than constructing a graph explicitly.

■ Even the explicit definition in pred form has a similar number of vars, even
it it’s faster to translate

■ Using the concrete inst syntax is much faster - we just set a bound, not
actually solving anything!

● Doesn’t even need to invoke the solver - super fast
■ What are some downsides of using instances?

● Partial instances can still be super slow - especially if we
underconstrain (there are a lot of possible weighted edges in a
directed graph)

● What do we do with weights?
○ We can try to add up all the edges

■ sing[sum[City.es.City]]
● This doesn’t work! City.es.City is a set, so if there are two edges

with the same weight, one of the weights won’t be counted.

