
Traces and Ghosts

Forge 4 discussion:

● Prims’ and Kruskal’s will always produce a spanning tree with the same weights
● Something regarding Conway’s game of Life

A bit about Integers:

● Forge has two types of integers: atoms and values
● In fields and relations, we can only use integer atoms
● To apply operations (e.g. add, subtract, >) on integers, we need to apply them to values

○ Can’t compare e.g. an atom and a value
○ This is why sometimes you might need to do sum/min/etc on only 1 value

● Make sure to check out the Forge docs! This link is also on the Assignments page.

Back to our linked list modeling:

● When we check well-formedness of a linked list, we are limited by our bounds
○ Forge will only guarantee you correctness up to the bounds
○ This is reassuring in the sense that there’s no small counterexample

● The small-scope hypothesis
○ Engineering principle
○ If there is a bug, there’s usually a small demonstration of the bug

Projection:

● Projecting over Linked List means: every relation with a linked list on the left side, we will
let you visualize those and go through them

● Useful when working on Stateful problems!

We’ve proven some invariants about linkedlists!

● Invariant 1:
○ ‘Null’ doesn’t exit in Forge, so use ‘no’ instead

● Invariant 2ab:
○ s.ghost.univ is the set of all integers used as indices in this state

■ They are Int Atoms, so we can use min[] on them.
■ However, the indexing uses Int Values, so we use sing[] in order to

convert it to the correct type.

Note about Forge 3 stack problem:

● What is ‘Event’?
○ A way to impose structure to the transitions
○ Gives you better visibility into what the arguments are
○ Otherwise, you would just see the sequence of states; this tricks the visualizer

into giving you more information.

https://github.com/cemcutting/Forge/blob/docs/forge/docs/basicForgeDocumentation.md

Note about Goats & Wolves:

● No need for ‘next’ relation in the State sig

