

2/7 - Recursion & Prop. Semantics

Syntax vs semantics:

● Heute regnet es.
● If we don’t speak the language, it’s just syntax
● Knowing what it means → semantics of it (“It’s raining today!”)
● There’s some function that takes syntax and produces meaning.

○ Semantics normally defined recursively
■ Forge has no recursion!

> Can an object hold itself or multiple of itselves? -- Yes

● Build up recursion by using the fact that objects have fields

Need notion of variable that is a special case of our formula

● We can also define subformulas for our ops: And, Or, Not
● Is there such a thing as a formula that is not a variable and is not a boolean operator?

○ wellformed​ constraint: any formula is either a variable or an object of boolean
syntax

● If we allow cycles, we run into issues since the ​Not​ operator will no longer be finite
> How can we deal with cycles?

● See if there are any self-loops
○ We need to make sure that when we take all edge relations into

consideration, we will still have no loops!
○ Prevent self-loops in each relation with ​no iden & ^<field>

■ When there’s multiple relations and you need to prevent cycles
that use edges from multiple relations, first take the union of the
relations, ​then​ apply ^.

● ^(child + oleft + oright + …)

● Need to write a constraint that tells us the semantics of our formulas (i.e. what they

mean)
● Every Formula is going to have a set of valuations that it is true with respect to

○ Every formula will be either true or false
■ This is what would normally be recursion

○ Not should return the opposite of its child
○ Relational operator that corresponds to boolean And: ​&
○ Set union (​+​) for Or, since it only needs one of the children to be true

