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We derive the first and second order statistics for the uniform distribu-
tion on [0, 1]. We use these results to prove that the expected revenue of
the first-price auction is equal to that of the second-price auction.

1 Order Statistics

Definition 1.1. The kth-order statistic, denoted X(k), is the the kth-
largest realization, among n, of a random variable X.

In particular, the first order statistic is the maximum of n draws,
the second order statistic is the second highest of n draws, and the
nth-order statistic is the minimum of n draws.

Order statistics, for reasons that should be intuitively clear, are
useful in analyzing the outcome of first- and second-price auctions.

2 First Order Statistic

We are interested in calculating the expected value of X(1), the first
order statistic, when sampling i.i.d. from a uniform distribution, call
it U, on [0, 1]. That is,

E
[

X(1)

]
=
∫ 1

0
x fX(1)

(x) dx.

We will proceed by computing the CDF FX(1)
, which is easy to

compute, and then taking derivatives to arrive at the PDF, fX(1)
.1 1 The CDF is defined as follows:

FX(x) =
∫ x

−∞
fX(t) dt.

By the Fundamental Thm of Calculus,

fX(x) =
d

dx
FX(x).

In particular,

fX(1)
(x) =

d
dx

FX(1)
(x).

Observe that the CDF at some value x ∈ [0, 1] is the probability
that all n draws are less than x: i.e.,

FX(1)
(x) = Pr(X(1) ≤ x)

= ∏
n

U(x)

= xn.

Now

fX(1)
(x) =

d
dx

FX(1)
(x)

=
d

dx
xn

= nxn−1.

Therefore,

E
[

X(1)

]
=
∫ 1

0
x fX(1)

(x) dx =
∫ 1

0
nxn dx =

n
n + 1

.
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2.1 Second Order Statistic

We follow the same steps to compute the second order statistic (using
fewer words).

CDF:
Pr(X(2) ≤ x) = xn + nxn−1(1− x)

In words, all the samples can be less than x, which happens with
probability xn, or only n− 1 of the samples can be less than x, which
can happen in n different ways, each with probability xn−1(1− x).

PDF:

fX(2)
(x) = nxn−1 + n(n− 1)xn−2(1− x)− nxn−1 = n(n− 1)xn−2(1− x)

Expected value of the second order statistic:

E
[

X(2)

]
=
∫ 1

0
x fX(2)

(x)dx

= n(n− 1)
∫ 1

0

(
xn−1 − xn

)
dx

= n(n− 1)
(

1
n
− 1

n + 1

)
= n(n− 1)

1
n(n + 1)

=
n− 1
n + 1

.

3 Revenue Equivalence

Theorem 3.1. If bidder’s values are uniform i.i.d., then the expected rev-
enue of the first-price auction is equal to that of the second-price auction,
assuming bidders behave according to their respective equilibrium strategies.

Proof. The support of the uniform distribution does not matter; we
choose [0, 1] for convenience. Let R1 and R2 denote the expected
revenue of the first- and second-price auctions, respectively.

In the second-price auction, the bidder with the highest value
wins, paying the second-highest value. Therefore, the expected rev-
enue is equal to the expected value of the second order statistic: i.e.,

R2 =
n− 1
n + 1

.

In a first-price auction, the expected revenue is equal to the ex-
pected highest bid. Recall that the equilibrium bid function bi =(

n−1
n

)
vi. As this function is monotonically non-decreasing, the high-

est bidder also has the highest valuation, call it vmax. In other words,

R1 = E

[(
n− 1

n

)
vmax

]
=

(
n− 1

n

)
E [vmax]
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But E [vmax] is the expected value of maximum of n i.i.d. draws from
random variable uniformly distributed on [0, 1] (i.e., the expected
value of the first order statistic), which is n

n+1 . Thus,

R1 =

(
n− 1

n

)(
n

n + 1

)
=

n− 1
n + 1

.

Therefore, R1 = R2.

A kth Order Statistic

Beta Function The Beta function B(x, y) is defined by the following
integral:

B(x, y) =
∫ 1

0
tx−1(1− t)y−1dy.

When x and y are positive integers, this function simplifies as fol-
lows:

B(x, y) =
(x− 1)!(y− 1)!
(x + y− 1)!

.

We will use the Beta function in (the very last step of) our derivation
of the expected value of the kth order statistic.

We begin by computing the probability the kth order statistic lies
in some small interval [x, x + ∆x] ⊂ [0, 1]. When the draws from X
are i.i.d.,

P(X(k) ∈ [x, x+∆x]) = n
(

n− 1
k− 1

)
P(X < x)n−k P(X ∈ [x, x+∆x]) P(X > x+∆x)k−1 +O(∆x2)

The middle three probabilities are, respectively, the chance of:

• exactly n− k values less than x,

• exactly one value between x and x + ∆x, and

• exactly k− 1 values greater than x + ∆x.

This gives the probability of one specific arrangement of this form,
so we multiply by the number of possible arrangements. There are n
possible agents who could have a value between x and x + ∆, after
which there are (n−1

k−1) possible groups of agents who could have
values greater than x, after which the remaining n − k agents are
fixed. N.B. There is also a chance that multiple values fall between
x and x + ∆x. As each such probability will contain a ∆xi term with
i ≥ 2, we include the term O(∆x2).

The assumption that X is uniformly distributed on [0, 1] yields the
following further simplification:

P(X(k) ∈ [x, x + ∆x]) = n
(

n− 1
k− 1

)
xn−k ∆x (1− x− ∆x)k−1 + O(∆x2)
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Letting xi+1 = xi + ∆x, we can express the expectation of interest
in discretized space as follows:

m

∑
i=1

xi P(X(k) ∈ [xi, xi+1])

To calculate the corresponding continuous expectation, we take the
limit as m→ ∞, so that the ∆x terms become arbitrarily small:

E
[

X(k)

]
= lim

m→∞

m

∑
i=1

xi P(X(k) ∈ [xi, xi + ∆x])

= n
(

n− 1
k− 1

)(
lim

m→∞

m

∑
i=1

xn−k+1
i ∆x (1− xi − ∆x)k−1 + O(∆x2)

)

= n
(

n− 1
k− 1

) ∫ 1

0
xn−k+1(1− x)k−1dx

= n
(

n− 1
k− 1

)
B(n− k + 2, k)

=

(
n!

(k− 1)!(n− k)!

)(
(n− k + 1)!(k− 1)!

(n + 1)!

)
=

n− k + 1
n + 1

.
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