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We describe the prophet inequality, and several simple near-optimal
mechanisms that follow as an immediate consequence.

1 The Prophet Inequality

The prophet inequality1 is a surprising result that lower bounds the 1 Ulrich Krengel and Louis Sucheston.
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expected reward2 one can obtain in the following game: You are the

2 or utility, or payoff, or etc.

leader of an investment team. Your team is in possession of some
assets that your most trustworthy monetary advisor claims will be
worthless after n days. Panicked, you decide to liquidate these assets
within the next n days, but want to do so while still maximizing
your rewards from selling the assets. Fortunately, your quant team
comprises CSCI 1951k/2951z alumni who are accurately able to back
out the exact distributions Fi of the assets’ market values πi on day i,
for all 1 ≤ i ≤ n.3 Equipped with this information, it is your job to 3 Perhaps surprisingly, market values

from one day to the next in this game
are independent of one another.

make the executive decision as to when you will sell the assets.
Once again:

1. The market value πi on day i is drawn from some distribution Fi.

2. At the start of day i, you observe the market value πi.

3. You then have two choices: cash out now, or wait.

4. If you cash out now, you walk away with a reward of πi.

5. If you wait, then you can no longer sell your assets at price πi, and
you will face the same decision the next day.

6. After n days, your assets become worthless.

7. Your task is to devise a strategy for deciding whether you should
sell on day i or wait another day, after observing πi.

This problem is an instance of an optimal stopping problem,
where the goal is to devise a stopping rule that tells you when to
stop, which in our setup means when to cash out. Another famous
stopping problem is the secretary problem. There, you are interview-
ing secretaries,4 and your goal is to decide when to stop interviewing 4 or applicants for any job, really,

including spouseso as to maximize the probability of hiring the best secretary, without
assuming the order in which applicants arrive is known a priori, or
even without assuming any distributional knowledge at all.



the prophet inequality 2

Optimal stopping rules can be computed via dynamic program-
ming when, n is small. For certain variants of the problem, these
rules take the form: reject the first m applicants, and then accept the
first applicant thereafter who is preferable to the first m.

In this lecture, we will not derive an optimal stopping rule, but
rather an approximately-optimal one. Our rule will take the form of
a thresholding strategy, where we accept the first applicant whose
value is above a pre-computed threshold. Note that computing this
threshold depends on knowledge of the distributions Fi of the ran-
dom variables. Implicit in the Fi notation, it should be clear that we
are also assuming independence.

Imagine a clairvoyant prophet who can see all of the πi’s in ad-
vance. With this information in hand, the optimal strategy is straight-
forward: choose the largest πi ≥ 0. In what follows, we will be
comparing the expected reward of a very simple thresholding strat-
egy to that of the prophet. The simple thresholding strategy is: fix a
value t, and then sell the assets on the first day, if any, that πi ≥ t.5 5 Note that this strategy is clearly sub-

optimal, as you would never retain the
assets on the very last day; neverthe-
less, our simple strategy never sells the
assets if πi never exceeds t.

We claim that for an appropriate choice of t, this simple threshold-
ing strategy is a 2-approximation of the optimal: i.e., the prophet’s
strategy. In fact, there are two distinct choices of t, both of which
achieve this goal. We derive one of them presently—the one which
lends itself to the development of approximately-optimal auctions.

2 Proof of the Prophet Inequality

Let APX and OPT denote the expected revenue of the thresholding
strategy and the prophet, respectively. We will proceed by first lower
bounding APX, and then upper bounding OPT.

APX, the expected reward of the threshold strategy, is the sum
of the expected values that the assets are sold on each day i, which
occurs only only if πi ≥ t and πj < t, ∀j < i: i.e.,

APX =
n

∑
i=1

E[πi | πi ≥ t; πj < t, ∀j < i]Pr(πi ≥ t; πj < t, ∀j < i)

=
n

∑
i=1

E[πi | πi ≥ t; πj < t, ∀j < i]Pr(πi ≥ t | πj < t, ∀j < i)Pr(πj < t, ∀j < i)

=
n

∑
i=1

E[πi | πi ≥ t]Pr(πi ≥ t)Pr(πj < t, ∀j < i) by independence

=
n

∑
i=1

(E[πi − t | πi ≥ t] + t)Pr(πi ≥ t)Pr(πj < t, ∀j < i)

=
n

∑
i=1

E[πi − t | πi ≥ t]Pr(πi ≥ t)Pr(πj < t, ∀j < i) + t

(
n

∑
i=1

Pr(πi ≥ t)Pr(πj < t, ∀j < i)

)
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Now let pt denote the probability that, at the threshold t, the assets
are not sold after all n days: i.e., pt = Pr(πi < t, ∀1 ≤ i ≤ n). Using
this notation, the probability that the assets are sold on one of days 1
through n, ∑n

i=1 Pr(πi ≥ t)Pr(πj < t, ∀j < i), is 1− pt. Thus, letting
(x)+ = max(0, x), we obtain a lower bound on APX as follows:

APX =
n

∑
i=1

E[(πi − t)+]Pr(πj < t, ∀j < i) + t(1− pt)

≥
n

∑
i=1

E[(πi − t)+]Pr(πj < t, ∀1 ≤ j ≤ n) + t(1− pt)

=
n

∑
i=1

E[(πi − t)+]pt + t(1− pt)

Having established a lower bound on APX, we proceed to derive
an upper bound on OPT. Since the prophet will sell the assets when
their price is maximal, the value of the prophet’s strategy can be
upper bounded as follows:

OPT = E

[
max

i
πi

]
≤ E

[
max

i
π+

i

]
= E

[
max

i
(π+

i − t)
]
+ t

≤ E

[
max

i
(πi − t)+

]
+ t

≤
n

∑
i=1

E
[
(πi − t)+

]
+ t

The only non-trivial step in this derivation is the second to last,
which follows as max(πi, 0)− t ≤ max(πi, t)− t = max(πi − t, 0).

Note that the above inequality holds for all thresholds t. We
choose t such that pt = 1/2 to obtain the desired 2-approximation:

APX ≥
n

∑
i=1

E
[
(πi − t)+

]
pt + t(1− pt)

= 1/2

(
n

∑
i=1

E
[
(πi − t)+

]
+ t

)
≥ 1/2 OPT

It turns out that another threshold value works just as well as the
choice we just derived. This value is t = 1/2 E [π∗], where π∗ =

maxi πi. A particularly elegant proof of this fact appears in Correa
et al.,6 as their proof implies both our choice and this latter choice 6 José R. Correa, Patricio Foncea, Ruben

Hoeksma, Tim Oosterwijk, and Tjark
Vredeveld. Recent developments in
prophet inequalities. SIGecom Exchanges,
17(1):61–70, 2018

at once. In particular, they prove APX ≥ ptt + (1− pt)(E [π∗]− t).
So, both choosing t either such that pt = 1/2 (as above) and setting
t = 1/2 E [π∗] yields the desired inequality.
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3 Applications of the Prophet Inequality

The prophet inequality can be used to design a 2-approximation of
Myerson’s optimal auction. This auction works as follows: Given bid-
ders 1, . . . , n, with values drawn from regular distributions F1, . . . , Fn,
set the reserve price for bidder i to be ϕ−1

i (t), where t is determined
by the prophet inequality, and ϕi is bidder i’s virtual value function.
Then pick two bidders who meet their reserve and allocate the good
to the one of the two who bids higher, at a price which is the maxi-
mum of their reserve and the other’s bid.7 7 Of course, it would be sensible for

an auctioneer who seeks to maximize
revenue to choose the two highest
bidders, but the bound holds for any
two bidders who meets their reserve.

Viewed from the point of view of the prophet inequality, bidders
turn up (sequentially or simultaneously; their arrival order does
not impact the bound), and each bidder i places bid vi. (We assume
incentive compatibility, as we enforce this constraint via Myerson’s
payments.) Any bidder i who meets their reserve bids such that
vi ≥ ϕ−1

i (t); equivalently, ϕi(vi) ≥ t. Therefore, the revenue APX
accrued by an auctioneer that employs a bidder-dependent threshold
strategy with threshold ϕ−1

i (t) is lower bounded by 1/2 OPT, where
OPT is the revenue of Myerson’s optimal auction:

APX ≥
n

∑
i=1

E
[
(ϕi(vi)− t)+

]
pt + t(1− pt)

= 1/2

(
n

∑
i=1

E
[
(ϕi(vi)− t)+

]
+ t

)

≥ 1/2

(
E

[
max

i
(φi(vi))

+

])
= 1/2

(
E

[
max

i
φi(vi)xi(v)

])
= 1/2 OPT

This auction, while sub-optimal, is simpler than Myerson’s optimal
auction. It relies on the virtual value function only to set the bidders’
reserve prices, and even then, it uses the function only at one specific
point, namely ϕ−1

i (t). Moreover, it is more natural, as it can (and
probably should; see Sidenote 7) allocate to the highest bidder.

There is also a straightforward connection between the prophet
inequality and posted-price mechanisms. Imagine a (matchbox) car
salesman who has posted a price on his prized Maserati. Each day,
another potential buyer enters his store, admires the car, and buys
it or not, depending on their value for the car. They buy it precisely
when their value exceeds (or matches) the price.

Assuming the salesman plans to entertain exactly n buyers, one
per day, and has knowledge of their value distributions, namely
F1, . . . , Fn, he can post ϕ−1

i (t) as the price for buyer i, where as above,
t is determined by the prophet inequality and ϕi is buyer i’s virtual
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value function. By the argument above, this posted price will guaran-
tee him half the revenue of Myerson’s optimal auction, assuming the
buyers walk away with the car if their value exceeds their price.

As the salesman operates in a sequential setting, perhaps he can
earn even more revenue by dynamically updating his threshold strat-
egy. You will explore this question in your homework.
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