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1 An Ascending Auction for Unit-Demand Valuations

Last week, we saw the CK auction for unit-demand valuations and
analyzed its properties. This week, we see another ascending auction
for the unit-demand model from an entirely different perspective. As
we recollect, in the unit-demand model, we have a set N of n bidders
and a set G of m heterogenous goods such that each bidder values
any subset of goods S ⊆ G at the value of the single most valuable
good in it, i.e.,

vi(S) = max
j∈S

vij

We assume that all valuations are integers. We would like to design
an EPIC ascending auction for this setting. From our recipe, it is
sufficient to design an auction that results in the VCG outcome for
sincere bidding and show that inconsistent bidding cannot help any
bidder do better than consistent bidding. First, we discuss an as-
cending auction design due to Demange, Gale and Sotomayor 1 that 1 Gabrielle Demange, David Gale,

and Marilda Sotomayor. Multi-item
auctions. Journal of Political Economy,
94(4):863–872, 1986

terminates with the VCG outcome.

An Aside. Before we begin we recollect Hall’s marriage theorem for
matching in bipartite graphs. Given a bipartite graph with vertices
X + Y and edges E there exists an X-saturating matching2 in this 2 a matching that matches all the ver-

tices in X to some vertex in Y.graph if and only if the following condition holds for all S ⊆ X:

|S| ≤ |N(S)|

where N(S) = {v ∈ Y | ∃u ∈ Ss.t.(u, v) ∈ E} is the set of neighbors
of S in Y. The condition requires that every subset of X have enough
neighbors in Y for a matching to be possible. A set S for which this
condition does not hold is called a Hall violator.

https://www.cs.brown.edu/people/grad/mgeorge5
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In the above examples, the first and the last graph contain Hall viola-
tors. For any bipartite graph (X +Y, E), there is an efficient algorithm
that will either return an X-saturating matching or return a subset
that is a Hall violator. In fact, the algorithm returns a minimal Hall
violator i.e. a subset S that violates the Hall marriage condition such
that no X ⊂ S is a Hall violator. Which of the above Hall violators
are minimal? Let the algorithm be denoted min-hall-violator for
future reference.

In the unit-demand setting an allocation corresponds to a match-
ing between goods and bidders. If we consider X = N and Y = G
and the edges

E = {(u, v) | bidder u demands good v at the current prices},

we can define an over-demanded set of goods. An over-demanded set
of goods is a set of goods S ⊆ G such that the number of bidders
that demand only goods in S is greater than the size of S. In other
words, the set of bidders T ⊆ X bidding on these goods have less
neighbors in Y than the size of T. This is exactly the condition for
a Hall violator in the set of bidders. From Hall’s theorem, we know
that there exists an X-saturating matching in a bipartite graph if and
only if there are no Hall violators in the set X. In the auction setting,
this implies that we cannot have a matching in the demand graph
if there exists an over-demanded set of goods at the current prices.
An over-demanded set of goods would imply that there is no way
to make the bidders bidding on these goods happy. This violates
the condition we1 for a Walrasian equilibrium. In fact, there exists a
Walrasian equilibrium if and only if there are no over-demanded sets
of goods at the current prices 3. 3 David Gale. The theory of linear eco-

nomic models. University of Chicago
press, 1989

This gives us some intuition to develop the auction design, and
we are ready to describe the auction for unit-demand valuations as
follows:

• Initialize the prices of all the goods to zero, pj = 0, ∀j.

• At every round r:

– ask every bidder to report all the goods they are willing to
buy at the current prices p. This set is called the demand set,
denoted as Di(p) for bidder i;

– given the demand graph GD between goods and bidders, run
min-hall-violator(GD). If the algorithm returns a matching
terminate with that allocation and current prices;

– if such a matching is not possible, the algorithm identifies a set
of bidders that demand a minimal set of over-demanded goods;

– the prices on this set of goods are increased by ε = 14 and the 4 this choice is reasonable because we
assume valuations are integral.auction continues to the next round.



primal-dual auctions 3

1.1 An Example Auction

As an example, consider the following auction with goods G =

{g1, g2, g3} and bidders N = {b1, b2, b3, b4}. Let the valuations of the
bidders be as follows:

b1 → v11 = 1; v12 = 2; v13 = 3;

b2 → v21 = 3; v22 = 2; v23 = 1;

b3 → v31 = 2; v32 = 1; v33 = 3;

b4 → v41 = 1; v42 = 2; v43 = 5;

The auction execution is depicted in the table below. At round r, Di

is the demand set of bidder bi at the prices p and pj,r is the price
of good gj. O is the minimal over-demanded set of goods whose
prices will be increased in round r + 1. Then we can see the auction
proceeds as follows:

Round (r) p1,r p2,r p3,r D1 D2 D3 D4 O
1 0 0 0 {3} {1} {3} {3} {3}
2 0 0 1 {2, 3} {1} {1, 3} {3} {1, 3}
3 1 0 2 {2} {1, 2} {1, 2, 3} {3} {1, 2, 3}
4 2 1 3 {2} {1, 2} {} {3} {}

The auction terminates at round r = 4 with the outcome of g1 to
b2 at price 2, g2 to b1 at price 1, and g3 to b4 at price 3. Bidder 3 is
priced out of the market at round 4. By its ascending nature, this
auction is guaranteed to terminate. Since the prices are always rising,
the demand for the goods will drop off eventually. When the auc-
tion terminates there will be no over-demanded goods. We already
know that (1) no over-demand is a sufficient condition for the exis-
tence of Walrasian equilibrium at current prices and (2) there exists
a matching in the demand graph at final prices that allocates every
bidder. Then we can see that the auction terminates at a Walrasian
equilibrium.

Additionally, the auction terminates at the smallest Walrasian
equilibrium, which (we have seen) corresponds to the VCG outcome
in the unit-demand setting. We state and prove the following theo-
rem from Demange, Gale and Sotomayor 5. 5 Gabrielle Demange, David Gale,

and Marilda Sotomayor. Multi-item
auctions. Journal of Political Economy,
94(4):863–872, 1986

Theorem 1.1. Let p be the price vector obtained from the auction under
sincere bidding and q be any other competitive price vector. Then p ≤ q.

Proof. For contradiction, let us assume that p is not the smallest
Walrasian price vector. Let q be the smallest Walrasian price vector
instead. The prices p are increased in every round 1 ≤ r ≤ n of
the auction. Let the price vector at round r be denoted as pr. Then
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initially p1 =~0 and therefore p1 ≤ q. But at termination, pn ≥ q. This
implies there is a round t, 1 < t < n at which pt ≤ q but pt+1 ≥ q.
Let us examine this round of the auction. Let S be the (minimal)
over-demanded set of goods in round t whose prices are increased in
round t + 1. Let T be the set of bidders who demand only goods in S.
By the definition of over-demand:

|T| > |S| (1)

Our strategy will be to show that there exists a proper subset of S
that is over-demanded. This cannot be possible according to the rules
of the auction thereby creating a contradiction. We have the following
observations:

• Let S1 be the set of goods j such that pj,t+1 > qj. But during round
t all goods j had prices pj,t ≤ qj and the prices increased by 1.
Then it has to be that pj,t = qj for all the goods in S1. This means
that all the goods in S1 were priced at Walrasian prices in round t.

• We assume for now that S− S1 is non-empty. Let T1 be the bidders
who demand at least one good in set S1 under prices pt. We show
that their demanded goods under prices q will all be in S1. Con-
sider one bidder i ∈ T1 and let α ∈ S1 be a good they demand in
S1.

1. For any β ∈ S − S1, the bidder i likes α at least as much as β

under pt. However, since α ∈ S1, we know pα,t = qα. Also,
since β ∈ S the price of β increased after round t. But β /∈ S1

so the new price is still at most the price of β in q. Then pβ,t <

pβ,t+1 ≤ qβ. If α maximizes bidder i’s utility even when β is
cheaper than in q, bidder i will also prefer α to β under prices
q.

2. For any β /∈ S, the bidder i prefers α more than β at pt even
though pα,t = qα and β is cheaper since pβ,t ≤ qβ. Similarly
bidder i will still prefer α to β under prices q.

Then for all i ∈ T1 their demand sets under prices q will lie inside
S1.

• However since q is an equilibrium there cannot be over-demand
under q. Therefore the set of bidders T1 must demand enough
goods under q:

|T1| ≤

∣∣∣∣∣∣⋃i∈T1

Di(q)

∣∣∣∣∣∣ ≤ |S1| (2)

• From equations (1, 2) we see that |T − T1| > |S− S1|. We assumed
that S − S1 is non-empty, and we know that all the bidders in
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T − T1 have no demanded goods in S1 by the definition of T1. It
has to be that the bidders T − T1 want only goods in S− S1. Then
S− S1 is a proper subset of S that is over-demanded and we have
the contradiction we were looking for.

• To complete the proof, we show that S− S1 cannot be empty. For
contradiction, assume it is empty i.e. all the goods in S are also in
S1. From our earlier observation about S1, all the goods in S now
have prices pt,j = qj. The bidders T only demand goods in S from
the over-demand condition. But all the goods β outside S have
prices pβ ≤ qβ. If the bidders in T prefer goods in S to all such
β under pt they will continue to demand them under the prices
q. But q is an equilibrium price vector and no set of goods can be
over-demanded. Therefore S cannot be over-demanded under q:

|T| ≤
∣∣∣∣∣⋃
i∈T

Di(q)

∣∣∣∣∣ ≤ |S|
but this violates the over-demand condition on S at round t since
the same bidders are also bidding on S at prices pt. With this, our
proof is complete.

Now we know that the auction terminates with the minimum
Walrasian price vector p and an allocation under these prices. From
the last lecture, we know that the VCG payments are the same as
the minimum Walrasian prices. From the first welfare theorem, we
know that all allocations supported by Walrasian prices are welfare-
maximizing. Given that the outcome is welfare-maximizing and the
payments are the VCG payments, we know that the auction outcome
is the same as the VCG outcome.

In the context of our recipe for EPIC auctions, we now only have
to show that inconsistent bidding does not do better than consistent
bidding. We note that a similar argument to last week’s for the CK
auction works in this setting. In today’s lecture we will study the
connection between linear programs and ascending auctions, and
derive the above auction from a completely different viewpoint.

2 The Primal-Dual Method for Auctions

In the unit-demand setting it is possible to express the welfare-
maximizing allocation as the objective of an integer linear program as
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follows:

max
x

n

∑
i=1

m

∑
j=1

vijxij

s.t.
n

∑
i=1

xij ≤ 1 ∀j ∈ G

m

∑
j=1

xij ≤ 1 ∀i ∈ N

xij ∈ {0, 1} ∀i ∈ N, j ∈ G

This program maximizes the welfare of the allocated bidders, subject
to some constraints. The first constraint says that no good can be
allocated to more than one bidder. Similarly the second constraint
says that no bidder can be allocated more than one good. The last
constraint forces the allocation to be integral i.e. the goods we are
dealing with are indivisible. We can relax this integer program to the
linear program because we know that this particular linear program
has integer optimal solutions 6. 6 Lloyd S Shapley and Martin Shubik.

The assignment game i: The core.
International Journal of game theory,
1(1):111–130, 1971

max
x

n

∑
i=1

m

∑
j=1

vijxij

s.t.
n

∑
i=1

xij ≤ 1 ∀j ∈ G

m

∑
j=1

xij ≤ 1 ∀i ∈ N

xij ≥ 0 ∀i ∈ N, j ∈ G

(3)

This linear program is the primal (P) that we will work with today.
Following the usual method, we derive the dual (D) of this program
to be the following:

min
p ,u

n

∑
i=1

ui +
m

∑
j=1

pj

s.t. ui + pj ≥ vij ∀i ∈ N, j ∈ G
ui ≥ 0 ∀i ∈ N
pj ≥ 0 ∀j ∈ G

(4)

The dual variables in this program can conveniently be interpreted
as the prices of the goods pj and the utilities of each bidder ui. We
denote the vectors of prices and utilities as p, u respectively. Together
the primal and the dual programs define the outcome of the auction,
which is a Walrasian outcome as we see in the following theorem 7. 7 Lloyd S Shapley and Martin Shubik.

The assignment game i: The core.
International Journal of game theory,
1(1):111–130, 1971

Theorem 2.1. p is a Walrasian price vector if and only if it participates in
an optimal solution (p, u) to the dual.

Proof Sketch. We note that the complementary slackness conditions
for the above primal and dual are equivalent to the conditions for
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Walrasian Equilibria. The complementary slackness conditions for
the programs above are as follows:

1. xij > 0⇒ ui = vij − pj and ui > vij − pj ⇒ xij = 0.

2.
n

∑
i=1

xij < 1⇒ pj = 0.

3.
m

∑
j=1

xij < 1⇒ ui = 0.

Let X = {xij} be the optimal primal solution and (p, u) be the opti-
mal dual solution8. X is a matching of bidders to goods such that: (1) 8 both solutions are integral as we have

seen.every bidder who is allocated gets one of their favorite goods; (2) if a
good is not allocated its price is zero; (3) if a bidder is not allocated
their utility is zero. These are exactly the conditions for Walrasian
equilibrium. In the other direction if (p, X) is a Walrasian equilib-
rium with utilities u such that ui = maxj(vij − pj) then X, (p, u) must
satify the conditions we1, we2 which are the same as the complemen-
tary slackness conditions. Then X is a primal feasible matching and
(p, u) are a dual feasible solution such that they satisfy the comple-
mentary slackness conditions. Therefore they must be optimal.

In the next section, we use the primal-dual algorithm to solve the
linear program (P) and derive an ascending auction in the process.

3 A Primal-Dual Algorithm

Given the programs (P) and (D), we know by strong duality that at
the optimal value for both programs,

n

∑
i=1

m

∑
j=1

vijx∗ij =
n

∑
i=1

u∗i +
m

∑
j=1

p∗j .

On the left of the equation we have the welfare of the allocation, and
on the right we have the sum of the prices and the utilities of the
individual bidders. We also know that the optimal solution to the
dual gives us Walrasian prices from Theorem 2.1.

At a high level, the primal-dual algorithm arrives at the optimal
value through a series of adjustments of the objective value. The
steps are (roughly) as follows:

1. Find a feasible solution to the dual.

2. Using this solution, write a ‘restricted’ primal program (RP)
that expresses the objective of finding the corresponding primal-
feasible solution that obeys complementary slackness.
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3. Compute the dual of the restricted primal (DRP). This program
can often be solved combinatorially and has a form similar to the
original dual.

4. Use the solution to (DRP) to ‘improve’ the solution to the original
dual.

3.1 The Restricted Primal

We begin by calculating a feasible solution to the dual (D). For
every good j, set the price pj = 0. For every bidder i, set ui =

maxj(vij − pj). This is a dual-feasible solution. For each i, the set
of goods that maximize (positive) ui at the current prices are the de-
mand set, Di(p). Then we define the set of edges E of the (bipartite)
demand graph as follows:

E = {(i, j) | j ∈ Di(p), ui > 0}

Similarly let the set of bidders that demand good j be denoted as
Bj(p). If there exists a matching in the demand graph that allocates
goods to all the bidders currently demanding goods, we are done. If
there does not exist such a matching, then we formulate the restricted
primal program. Let X = Be denote the set of bidders and Y = Ge

the set of goods in the demand graph. Let Ge
0 be the set of goods that

have prices 0 in the dual solution we started with:

min
x ,y ,z ∑

i∈Be
yi + ∑

j/∈Ge
0

zj

s.t. ∑
i∈Bj(p)

xij ≤ 1 ∀j ∈ Ge
0

∑
i∈Bj(p)

xij + zj = 1 ∀j /∈ Ge
0

∑
j∈Di(p)

xij + yi = 1 ∀i ∈ Be

xij ≥ 0 ∀(i, j) ∈ E
yi ≥ 0 ∀i ∈ Be

zj ≥ 0 ∀j /∈ Ge
0

where y, z are newly defined ‘slack’ variables. We note that we start
the prices at 0, so all the goods that are part of Ge in the first itera-
tion have price 0 and therefore Ge = Ge

0. The first constraint gives
some slack on the primal constraint for goods if the prices are 0. If
the prices are non-zero, the second constraint enforces (relaxed) com-
plementary slackness on goods. The slack variables zj are therefore
only defined for j /∈ Ge

0. For bidders in Be, the value of ui > 0 be-
cause of how E is defined. When we begin all the bidders are in Be9. 9 we can ignore any bidder who is not

part of Be at prices 0, because if they
don’t demand any goods at price 0 they
do not have any incentive to participate
in the auction.

The second constraint enforces (relaxed) complementary slackness on
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these bidders. At the optimal dual solution, there will exist a primal-
feasible solution that obeys the complementary slackness conditions.
This implies that all the slack variables can take value 0 and so the
optimal value of the restricted primal objective will be 0. For any
sub-optimal dual solution, there will not exist such a primal solu-
tion. Then the slack variables will have to be positive and the optimal
objective value of the restricted primal will also have a positive value.

3.2 Improving the Dual Solution

By strong duality, when the optimal objective value of the restricted
primal is positive the optimal objective value of the dual of the re-
stricted primal will also be positive. Then we compute the dual of the
restricted primal as follows:

max
u′ ,p′

− ∑
i∈Be

u′i − ∑
j∈Ge

p′j

s.t. u′i + p′j ≥ 0 ∀(i, j) ∈ E
u′i + 1 ≥ 0 ∀i ∈ Be

p′j + 1 ≥ 0 ∀j /∈ Ge
0

p′j ≥ 0 ∀j ∈ Ge
0

In short, if the dual feasible solution we started with was not op-
timal, then the above program will have a positive optimal value.
Then there exist some values for p′, u′ such that ∑i∈Be u′i + ∑j∈Ge p′j
will be negative. How do we find such values? To be feasible, the
p′ variables have to be at least 0 for some goods (and −1 for others
depending on their current prices), the u′ have to be at least (−1)
and they must sum to at least 0 for every edge in E. Additionally, the
number of bidders must somehow outweigh the number of goods for
∑i∈Be u′i +∑j∈Ge p′j to have a negative value. Does this sound familiar?

If we can find a minimal overdemanded set of goods we can con-
struct such a solution to the dual of the restricted primal. Let the
overdemanded set of goods be O and the bidders bidding only on
goods in O be Ob. Construct a solution as follows:

1. Set the price p′k = 0 for every good k /∈ O.

2. Set the utility u′l = 0 for every bidder l /∈ Ob.

3. For every good j in O, set p′j = 1.

4. For every bidder i in Ob set u′i = (−1).

This is a feasible solution with ∑i∈Be u′i + ∑j∈Ge p′j < 0. How do we
find such a set? Run min-hall-violator on the demand graph!

Now we have a solution to reduce the objective value of the dual.
Increase the pj for all the goods j in the set O by ε = 1 and decrease
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ui by 1 for all the bidders in Ob. Since the bidders demanded only
items in O, their maximum utility decreases by 1 because all the
goods they wanted are now more expensive. Adding a negative
value to the dual objective reduces its value, bringing it closer to
the optimal point. This is exactly the price rise step in the Demange
auction. We then start with a new dual-feasible solution, formulate
the restricted primal corresponding to it, and repeat till the algorithm
terminates.

3.3 Termination

The algorithm terminates when the dual of the restricted primal has
value 0 i.e. there are no over-demanded subsets of goods, which is
sufficient for equilibrium. Then min-hall-violator will return
a matching in the demand graph. To complete the picture, we ar-
gue that the complementary slackness conditions are maintained
throughout the execution of the primal-dual algorithm.

1. xij > 0 ⇒ ui = vij − pj and ui > vij − pj ⇒ xij = 0. The utility ui

is always maintained at the maximum possible value. If a bidder is
allocated, their edge was in the demand graph, and therefore they
receive a good that maximizes their utility.

2.
m

∑
j=1

xij < 1 ⇒ ui = 0. If a bidder has positive utility, they will

be part of the demand graph and therefore the final matching.
Then the only bidders that do not get allocated are those who have
utility 0 at the current prices.

3.
n

∑
i=1

xij < 1 ⇒ pj = 0. Lastly, if the price of a good increases once

it is then part of some over-demanded set of goods O. This implies
it is in the demand set of at least one bidder who demands only
goods in O. The good remains in the demand set of this bidder till
the bidder is ‘priced out’ of the competition for that good (utility
drops to zero). At that point, this implies that some other bidder
is demanding the good10. Then if the price of a good increases 10 assuming not everyone is priced out

in the same round.from zero, it continues to be in at least one demand set until the
final matching allocates it to a bidder. Therefore if a good is not
allocated to any bidder, it never was in the demand graph and
therefore is still priced at 0 when the auction ends.

Then when the algorithm terminates, it will terminate with a solu-
tion to the dual that cannot be improved any further since there are
no overdemanded sets of goods. This is then a Walrasian equilib-
rium. From Theorem 2.1 every solution to the dual is a Walrasian
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price vector. Additionally, at every iteration we increase the prices
of a minimal over-demanded set of goods. This process leads to the
smallest Walrasian prices from Theorem 1.1. From our earlier rea-
soning for the auction, this algorithm also terminates with the VCG
outcome.

3.4 The Example, Revisited

We now revisit our earlier auction with 3 goods and 4 bidders with
this new algorithm. Recall the valuations as follows:

v11 = 1; v12 = 2; v13 = 3;

v21 = 3; v22 = 2; v23 = 1;

v31 = 2; v32 = 1; v33 = 3;

v41 = 1; v42 = 2; v43 = 5;

• We begin with a dual feasible solution. Let all the prices of the
goods pj = 0. Then for each bidder i the current utility ui =

maxj(vij − pj). We have ub1 = 3, ub2 = 3, ub3 = 3, ub4 = 5. The dual
objective value is 14.

• We consider the set of edges E of the demand graph E = {(1, 3), (2, 1)
, (3, 3), (4, 3)}. Then Be = {b1, b2, b3, b4} and Ge = Ge

0 = {g1, g3}.
There does not exist a matching in this graph that allocates all the
bidders in it.

• We formulate the dual of the restricted primal:

max
u′ ,p′

−u′b1
− u′b2

− u′b3
− u′b4

− p′g1
− p′g3

s.t. u′b1
+ p′g3

≥ 0
u′b2

+ p′g1
≥ 0

u′b3
+ p′g3

≥ 0
u′b4

+ p′g3
≥ 0

u′b1
+ 1 ≥ 0

u′b2
+ 1 ≥ 0

u′b3
+ 1 ≥ 0

u′b4
+ 1 ≥ 0
p′g1

≥ 0
p′g3

≥ 0

• We know that O = {g3} is minimally over-demanded, and so we
construct a feasible solution to the above program following the
algorithm. Setting p′g3

= 1; u′b1
, u′b3

, u′b4
= (−1) and every other

variable to 0, the objective value of the program is 2. Then the
negative of this is −2.
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• We use this solution to increase the price of g3 in the dual program
by 1. Under these new prices we find a feasible dual solution.
The utility of the bidders are now ui = maxj(vij − pj). We have
ub1 = 2, ub2 = 3, ub3 = 2, ub4 = 4 and pg3 = 1. The dual objective
value is now 12.

This completes the first iteration of the primal-dual algorithm. We
used the dual of the restricted primal to reduce the objective value of
the dual. We now examine one more iteration of the algorithm.

• We consider the set of edges E of the demand graph E = {(1, 2),
(1, 3), (2, 1), (3, 1), (3, 3), (4, 3)}. Then Be = {b1, b2, b3, b4} and Ge =

{g1, g2, g3} but Ge
0 = {g1, g2}. There does not exist a matching in

this graph that allocates all the bidders in it.

• We formulate the dual of the restricted primal:

max
u′ ,p′

−u′b1
− u′b2

− u′b3
− u′b4

− p′g1
− p′g2

− p′g3

s.t. u′b1
+ p′g2

≥ 0
u′b1

+ p′g3
≥ 0

u′b2
+ p′g1

≥ 0
u′b3

+ p′g1
≥ 0

u′b3
+ p′g3

≥ 0
u′b4

+ p′g3
≥ 0

u′b1
+ 1 ≥ 0

u′b2
+ 1 ≥ 0

u′b3
+ 1 ≥ 0

u′b4
+ 1 ≥ 0
p′g1

≥ 0
p′g2

≥ 0
p′g3

+ 1 ≥ 0

• Note how the constraint for good g3 changed because the price in
the dual solution we started with was not non-zero. We know that
O = {g1, g3} is minimally over-demanded, and so we construct
a feasible solution to the above program following the algorithm.
Setting p′g1

, p′g3
= 1; u′b2

, u′b3
, u′b4

= (−1) and every other variable to
0, the objective value of the program is 1. Then the negative of this
is −1.

• We use this solution to increase the prices of g1 and g3 in the dual
program by 1. Under these new prices we find a feasible dual
solution. The utility of the bidders are now ui = maxj(vij − pj). We
have ub1 = 2, ub2 = 2, ub3 = 1, ub4 = 3 and prices pg1 = 1, pg3 = 2.
The dual objective value is now 11.
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This completes the second iteration of the primal-dual algorithm. We
can now see that each iteration of the algorithm is exactly one price
increase step of the auction. Then the primal-dual algorithm will also
converge to the same matching and prices as the auction in one more
iteration. The algorithm terminates with objective value 10 which is
the maximum welfare as well as the sum of prices and utilities at the
smallest Walrasian equilibrium.

Concluding Remarks. Today we saw a new perspective on ascending
auctions based on linear programs and the primal-dual method. Sev-
eral auctions in the literature have been formulated as primal-dual
algorithms for diminishing marginal values, and gross substitutes,
among others. For further reading refer to the discussion on primal-
dual auctions by deVries et al 11. 11 Sven de Vries, James Schummer,

and Rakesh V Vohra. On ascending
vickrey auctions for heterogeneous
objects. Journal of Economic Theory,
132(1):95–118, 2007
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