RL Overview

Nishant Kumar

Setting

St+1

T(St+11S0:6, Ao:t)

!

Agent

7t = R(So:t» Ap:t)

World

Setting

T (S¢+1lS0:t @o:t)
St+1 I : e = R(So:t, ao:¢)

Agent World

St

 What should our goal be?
e How do we measure it?
* How do we achieve it?

Definitions

e A single-agent RL system is defined by:

S is a set of states.
A is a set of actions.

R is a reward function that determines the immediate reward r; received at time
L.

T is a transition function that represents the stochasisity of the system.

7 is a discount factor between 0 and 1 (inclusive).
e An agent behaves according to a policy m, where m can be either:

a deterministic function dictating which action to take from which state, i.e. 7 :
S — A

a stochastic function dictating with what probability to take an action from a
state, i.e. m: S x A — Pr(0,1].

e A lrajectory or episode 7 is a sequence of (s, a,, 7, 8,4;) an agent experiences in one
"run":
T=S8)—=>0y) —=>Tog—>8 —> - —>8Sr

Where 1" denotes the horizon or length of the "run". Note that 7" could be oo.

Where p(7) represents the probability of trajectory 7. Note that if rewards are deter-
ministic, then the r;’s are not needed in p(7). Note that p(7) depends on 7.

e Canonically, the goal of an agent starting in state s is to maximize its expected sum of
discounted rewards:

;
V™ (s1) = Ermpn) [_ 7" "'70] 50 = 5]
't

7" = argmax_V7(sg)

Definitions

Markov chain

S — state space states s € S (discrete or continuous)
T — transition operator P(se+1/8¢)

Markov property

~ N /<. independent of s;
S1 » S2 "\53

C/ p(si+1/st) p P(St+1]st)

Definitions

Markov decision process M={SAT,r}
S — state space states s € S (discrete or continuous)
A — action space actions a € A (discrete or continuous)

T — transition operator (now a tensor!)

Tijk = P(St41 = |8t = j,ay = k)

Setting, as an MDP

St+1 I

T(St+1lSe,at)

1t = R(st, ar)

Agent

World

Definitions

e An MDP is defined by (S, A, R, T, ~), where:

S is a set of states.

A is a set of actions.

R is a reward function and R(s,a) (or alternatively R(s,a,s’)) is the immediate
reward received from being in state s and taking action a.

1" is a transition function and 7'(s’|s, a) is the probability of transitioning to state
s" after taking action a from state s.

7v is a discount factor between 0 and 1 (inclusive).

Setting, as a tree

T(St+1lSear) r. = R(Sp, ap)

St+1 I

Agent World

.~ = Expectation

Value Functions: V and Q

1

— H V™(sy) = Erpir) v trus, =]
Actions (1) = Eormat [; rels
A " = Q™ (s, 7(s1))
States |
1
(t,)ﬁ(sl-”l) — Erxplrl(z A'I _’,",’5{ = S,4y = ”]
t'—t

— I'(S,_(l,) + A'Es,.]xp(a,‘]\ar.url[":(sl+l)]

.~ = Expectation

RL Algorithms (tabular)

Known T and R Unknown T and R
Evaluate policy * Value Iteration / * Monte Carlo Policy Evaluation
Dynamic Programming Temporal Difference Learning
Find optimal policy * Value Iteration * Monte Carlo Online Control
* SARSA
* Q-Learning

Key |dea: Bootstrapping

— fch.jions |

. e

.~ = Expectation ‘.~ = Expectation

Value Iteration / DP (Policy Eval)

o Initialize V' (s) =0 for all s
@ For kK =1 until convergence
o Forall sin$S

Vi (s) = r(s,m(s)) +7 > p(s'|s, m(s)) Vi1 (s")

s'eS
e V[(s) is exact value of k-horizon value of state s under policy 7

e V[(s) is an estimate of infinite horizon value of state s under policy ™

V™ (s) = Ex[Ge|st = s] = Ex[re + v Vi_1|st = s]

Value Iteration (Find optimal)

@ Set k=1

@ Initialize Vp(s) = 0O for all states s
@ Loop until [finite horizon, convergence]:

o For each state s
Visa(s) = maxR(s, a) +1 > P(s'|s.a) Vi(s")
o Equivalently, in Bellman backup notation
Vis1 = BVi

@ o extract optimal policy if can act for kK + 1 more steps,

m(s) = argmax R(s,a) + Z P(s'|s, a)Vii1(s)

s'eS

Monte Carlo Policy Eval

Initialize N(s) =0, G(s)=0Vse S
Loop

@ Sample episode | = s;1.aj1.ri1,Si2,3i2, 2

@ Define Gj+ = rit +rit+1 + 1.=2r,-,t+2 + -ﬂ,"'Tf_lr;’T,. as return from
time step t onwards in /th episode
@ For each state s visited in episode |
o For first time t that state s is visited in episode |

@ Increment counter of total first visits: N(s) = N(s) + 1
o Increment total return G(s) = G(s) + G ;
e Update estimate V™ (s) = G(s)/N(s)

Monte Carlo Policy Eval (alt.)

Initialize N(s) =0, G(s)=0Vse S
Loop

o Sample episode | = S5i1,9i1-1i1,5i2,2i2,l2s---550T;

Ti—1

@ Define Gj+ = rit +yrit+1 + 7.*2r,-,t+2 + -y ri. T, as return from

time step t onwards in ith episode
@ For state s visited at time step t in episode |

o Increment counter of total first visits: N(s) = N(s) + 1
o Update estimate

V(s) = V7(s) + a(Gye — V7(s))

Q N%S): identical to every visit MC

. forget older data, helpful for non-stationary domains

S’

Temporal Difference Learning

Input: a
Initialize V™(s) =0, Vs e S
Loop

@ Sample tuple (s¢, a¢. re. 1)
© V7(st) = V7™(st) + a[re +7V"(st41)] =V7(st))

TD target

Monte Carlo Online Control

1: Initialize Q(s,a) =0,N(s,a) =0V(s,a), Sete =1, k=1
2: mx = e-greedy(Q) // Create initial e-greedy policy
3: loop
Sample k-th episode (sk 1, ak1, k.1, Sk.2,---,Sk.T) given m

4
4 Gkt = Nt + Vrkt+1 + ’7"’2fk,t+2 + - “;*‘T"_lrk,T,-
5 fort=1,.... T do

6: if First visit to (s, a) in episode k then
7 N(s,a) = N(s,a) +1

8 Q(st,ar) = Qs ar) + ﬁ(ck,t — Q(st, ar))
9 end if

10: end for

11: k=k+1 e=1/k

12: m, = e-greedy(Q) // Policy improvement

13: end loop

SARSA

1: Set initial e-greedy policy 7w, t = 0, initial state s; = sy

2: Take a; ~ m(s;) // Sample action from policy

3: Observe (r¢, st11)

4: loop

5. Take action ar41 ~ m(S¢+1)

6: Observe (re+1,5t+2)

7 Q(st, at) < Q(st,ar) + alre + vQ(st+1, ar+1) — Q(st, ar))
8: m(s¢) = argmax, Q(st, a) w.prob 1 — ¢, else random

90 t=t+1

10: end loop

Q-Learning

1: Initialize Q(s,a),Vs € S,a€ At =0, initial state s; = s
2: Set mp to be e-greedy w.r.t. Q

3: loop

4: Take ar ~ mp(st) // Sample action from policy

5 Observe (rt, st+1)

6 Q(st, ar) < Q(st, ar) + a(r: +vargmax, Q(sy, a) — Q(st, at))
7. 7(st) = argmax, Q(s¢, a) w.prob 1 — ¢, else random

g: t=t+1

9: end loop

