# **RL Overview**

Nishant Kumar

# Setting



## Setting



- What should our goal be?
- How do we measure it?
- How do we achieve it?

- A single-agent RL system is defined by:
  - S is a set of states.
  - A is a set of actions.
  - R is a reward function that determines the immediate reward  $r_t$  received at time t.
  - T is a transition function that represents the stochasisity of the system.
  - $-\gamma$  is a discount factor between 0 and 1 (inclusive).
- An agent behaves according to a policy  $\pi$ , where  $\pi$  can be either:
  - a deterministic function dictating which action to take from which state, i.e.  $\pi: S \to A$ .
  - a stochastic function dictating with what probability to take an action from a state, i.e.  $\pi: S \times A \to Pr[0,1]$ .
- A trajectory or episode  $\tau$  is a sequence of  $(s_t, a_t, r_t, s_{t+1})$  an agent experiences in one "run":

$$\tau = s_0 \to a_0 \to r_0 \to s_1 \to \cdots \to s_{T-1}$$

Where T denotes the horizon or length of the "run". Note that T could be  $\infty$ .

Where  $p(\tau)$  represents the probability of trajectory  $\tau$ . Note that if rewards are deterministic, then the  $r_i$ 's are not needed in  $p(\tau)$ . Note that  $p(\tau)$  depends on  $\pi$ .

 Canonically, the goal of an agent starting in state s is to maximize its expected sum of discounted rewards:

$$V^{\pi}(s_t) = \mathbb{E}_{\tau \sim p(\tau)} \left[ \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'} | s_t = s \right]$$
$$\pi^* = \operatorname{argmax}_{\pi} V^{\pi}(s_0)$$

Markov chain

$$\mathcal{M} = \{\mathcal{S}, \mathcal{T}\}$$

 $\mathcal{S}-\mathrm{state\ space}$ 

states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{T}$  – transition operator  $p(s_{t+1}|s_t)$ 



Markov decision process

$$\mathcal{M} = \{\mathcal{S}, \mathcal{A}, \mathcal{T}, r\}$$

S – state space

states  $s \in \mathcal{S}$  (discrete or continuous)

 $\mathcal{A}$  – action space

actions  $a \in \mathcal{A}$  (discrete or continuous)

 $\mathcal{T}$  – transition operator (now a tensor!)

$$\mathcal{T}_{i,j,k} = p(s_{t+1} = i | s_t = j, a_t = k)$$



# Setting, as an MDP



- An MDP is defined by  $\langle S, A, R, T, \gamma \rangle$ , where:
  - S is a set of states.
  - A is a set of actions.
  - -R is a reward function and R(s,a) (or alternatively R(s,a,s')) is the immediate reward received from being in state s and taking action a.
  - T is a transition function and T(s'|s,a) is the probability of transitioning to state s' after taking action a from state s.
  - $-\gamma$  is a discount factor between 0 and 1 (inclusive).

# Setting, as a tree





= Expectation

## Value Functions: V and Q



$$V^{\pi}(s_t) = \mathbb{E}_{\tau \sim p(\tau)} \left[ \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'} | s_t = s \right]$$
$$= Q^{\pi}(s_t, \pi(s_t))$$

$$Q^{\pi}(s_t, a_t) = \mathbb{E}_{\tau \sim p(\tau)} \left[ \sum_{t'=t}^{T} \gamma^{t'-t} r_{t'} | s_t = s, a_t = a \right]$$
$$= r(s_t, a_t) + \gamma \mathbb{E}_{s_{t+1} \sim p(s_{t+1}|s_t, a_t)} \left[ V^{\pi}(s_{t+1}) \right]$$

= Expectation

# RL Algorithms (tabular)

|                     | Known T and R                             | Unknown T and R                                                                         |
|---------------------|-------------------------------------------|-----------------------------------------------------------------------------------------|
| Evaluate policy     | Value Iteration /     Dynamic Programming | <ul> <li>Monte Carlo Policy Evaluation</li> <li>Temporal Difference Learning</li> </ul> |
| Find optimal policy | Value Iteration                           | <ul><li>Monte Carlo Online Control</li><li>SARSA</li><li>Q-Learning</li></ul>           |

# Key Idea: Bootstrapping



## Value Iteration / DP (Policy Eval)

- Initialize  $V_0^{\pi}(s) = 0$  for all s
- For k = 1 until convergence
  - For all s in S

$$V_k^{\pi}(s) = r(s, \pi(s)) + \gamma \sum_{s' \in S} p(s'|s, \pi(s)) V_{k-1}^{\pi}(s')$$

- $V_k^{\pi}(s)$  is exact value of k-horizon value of state s under policy  $\pi$
- $V_k^{\pi}(s)$  is an estimate of infinite horizon value of state s under policy  $\pi$

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s] \approx \mathbb{E}_{\pi}[r_t + \gamma V_{k-1}|s_t = s]$$

## Value Iteration (Find optimal)

- Set k = 1
- Initialize  $V_0(s) = 0$  for all states s
- Loop until [finite horizon, convergence]:
  - For each state s

$$V_{k+1}(s) = \max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_k(s')$$

Equivalently, in Bellman backup notation

$$V_{k+1} = BV_k$$

• To extract optimal policy if can act for k+1 more steps,

$$\pi(s) = \arg\max_{a} R(s, a) + \gamma \sum_{s' \in S} P(s'|s, a) V_{k+1}(s')$$

## Monte Carlo Policy Eval

Initialize N(s) = 0,  $G(s) = 0 \ \forall s \in S$ Loop

- Sample episode  $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define  $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$  as return from time step t onwards in ith episode
- For each state s visited in episode i
  - For first time t that state s is visited in episode i
    - Increment counter of total first visits: N(s) = N(s) + 1
    - Increment total return  $G(s) = G(s) + G_{i,t}$
    - Update estimate  $V^{\pi}(s) = G(s)/N(s)$

## Monte Carlo Policy Eval (alt.)

Initialize N(s) = 0,  $G(s) = 0 \ \forall s \in S$ Loop

- Sample episode  $i = s_{i,1}, a_{i,1}, r_{i,1}, s_{i,2}, a_{i,2}, r_{i,2}, \dots, s_{i,T_i}$
- Define  $G_{i,t} = r_{i,t} + \gamma r_{i,t+1} + \gamma^2 r_{i,t+2} + \cdots + \gamma^{T_i-1} r_{i,T_i}$  as return from time step t onwards in ith episode
- For state s visited at time step t in episode i
  - Increment counter of total first visits: N(s) = N(s) + 1
  - Update estimate

$$V^{\pi}(s) = V^{\pi}(s) + \alpha(G_{i,t} - V^{\pi}(s))$$

- $\alpha = \frac{1}{N(s)}$ : identical to every visit MC
- $\alpha > \frac{1}{N(s)}$ : forget older data, helpful for non-stationary domains

## Temporal Difference Learning

```
Input: \alpha
Initialize V^{\pi}(s) = 0, \forall s \in S
Loop
```

- Sample **tuple**  $(s_t, a_t, r_t, s_{t+1})$
- $V^{\pi}(s_t) = V^{\pi}(s_t) + \alpha(\underbrace{[r_t + \gamma V^{\pi}(s_{t+1})]}_{\text{TD target}} V^{\pi}(s_t))$

### Monte Carlo Online Control

```
1: Initialize Q(s, a) = 0, N(s, a) = 0 \ \forall (s, a), Set \epsilon = 1, k = 1
 2: \pi_k = \epsilon-greedy(Q) // Create initial \epsilon-greedy policy
 3: loop
       Sample k-th episode (s_{k,1}, a_{k,1}, r_{k,1}, s_{k,2}, \ldots, s_{k,T}) given \pi_k
 4: G_{k,t} = r_{k,t} + \gamma r_{k,t+1} + \gamma^2 r_{k,t+2} + \cdots + \gamma^{T_i-1} r_{k,T_i}
 5: for t = 1, ..., T do
 6: if First visit to (s, a) in episode k then
             N(s,a) = N(s,a) + 1
             Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s_t, a_t)} (G_{k,t} - Q(s_t, a_t))
          end if
 g.
10: end for
11: k = k + 1, \epsilon = 1/k
12: \pi_k = \epsilon-greedy(Q) // Policy improvement
13: end loop
```

#### **SARSA**

```
1: Set initial \epsilon-greedy policy \pi, t=0, initial state s_t=s_0

2: Take a_t \sim \pi(s_t) // Sample action from policy

3: Observe (r_t, s_{t+1})

4: loop

5: Take action a_{t+1} \sim \pi(s_{t+1})

6: Observe (r_{t+1}, s_{t+2})

7: Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t))

8: \pi(s_t) = \arg\max_a Q(s_t, a) w.prob 1 - \epsilon, else random

9: t = t + 1

10: end loop
```

## Q-Learning

```
1: Initialize Q(s, a), \forall s \in S, a \in A \ t = 0, initial state s_t = s_0

2: Set \pi_b to be \epsilon-greedy w.r.t. Q

3: loop

4: Take a_t \sim \pi_b(s_t) // Sample action from policy

5: Observe (r_t, s_{t+1})

6: Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha(r_t + \gamma \arg\max_a Q(s_{t_1}, a) - Q(s_t, a_t))

7: \pi(s_t) = \arg\max_a Q(s_t, a) w.prob 1 - \epsilon, else random

8: t = t + 1

9: end loop
```