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1. Optimize some function f of n variables x according to m 
constraints A where:
a. f is a linear function of x
b. A consists of linear inequality constraints of x

2. Written in the following form:
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1. x is an n by 1 vector of variables
2. c is an n by 1 vector of coefficients
3. A is an m by n matrix of constraint coefficients
4. b is an m by 1 vector of constraint bounds
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Preliminaries

For concreteness sake, let’s consider an example.

You are a factory owner that produces jewelry. You seek to 
convert raw input to output such that you maximize profit.

1. There are 2 possible inputs, gold and diamonds.
2. There are 2 possible outputs, rings and necklaces.
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1. Rings require 3 units of gold, 1 unit of diamond.
2. Necklaces require 2 units of gold, 3 units of diamond.
3. Rings sell for 300$, necklaces sell for 500$.
4. You have 22 units of gold, 12 units of diamond.

Find values of c, A, and b for x = [#Rings, #Necklaces].

cT = [300, 500],  bT  = [22, 12],  A = [3 2; 1 3]
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cT = [300, 500],  bT  = [22, 12],  A = [3 2; 1 3]

Can you find the optimal values of x?

x = (6, 2) → Revenue = 6 * 300 + 2 * 500 = 2800$
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Here is the 
feasible region

Interesting to note 
that the optimal 
solution (6, 2) is at 
the intersection of 
two constraints.
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Tangency point of feasible region and objective function.
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Questions:

1. Can there be more than one solution?
a. Yes! Potentially if one constraint parallel to objective

2. Can we have no solution?
a. Yes! There are two ways this can happen:

i. Unboundedness: Underconstrained, objective 
function goes to (negative) infinity.

ii. Infeasibility: Overconstrained, no feasible region!
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3. Can we include greater or equal to constraints?

a. Yes, negate that constraint.

4. How about equality constraints?

a. Yes, introduce slack variables. Let constraints be 
ax + by = c, where x, y > 0. This is equivalent to:   
ax + by - z < c where x, y, z > 0.
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Algorithms

Simplex algorithm:

1. Uses fact that the optimal point occurs where the 
constraints are tight.

2. Traverses across points of intersections between 
hyperplanes defined by the constraints.

3. Since there are an exponential number of these points, 
simplex algorithm is exponential.

4. However, simplex is extremely fast in practice!



Algorithms

There exist other algorithms for linear (convex) programs:

1. Ellipsoid method (polynomial time!... but big constants)
2. Interior point methods
3. Newton’s method
4. Gradient/Conjugate Gradient Descent
5. Coordinate descent
6. Many others...
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Important concept for linear programming. Original problem 
is called the primal problem. The dual problem is as follows:

Dual has m variables, n constraints.

Let’s formulate the dual for the example we had earlier:
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Subject to: 3x + 2y < 22, bT = [22, 12]

x   + 3y < 12, A  = [3 2; 1 3]

x, y > 0
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Solving this yields x’ = 400/7, y’ = 900/7 → Obj func = 2800

Things to note:

1. Objective function has the same value as the primal! 
There is a reason for this, which we will get into shortly.

2. The value of the objective function is the minimum 
amount that you would be willing to sell your inputs for; x’ 
= 400/7$ per gold unit, y’ = 900/7$ per diamond unit.
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Duality

Weak duality: For any feasible solution (x’, y’) in the dual and 
(x, y) in the primal, the objective function in the dual is at least 
that of the primal. (See proof in wiki for Dual Linear Program)

1. Implies that infeasible primal → unbounded dual
2. Similarly, unbounded primal → infeasible dual

Strong duality: If one of the two problems has an optimal 
solution, then the optimal objective function values are equal.



Extensions

Unfortunately, not all optimization problems are linear:

1. Quadratic programming (exists nice theory for this)
2. Convex programming (still somewhat nice theory)
3. Nonlinear optimization (yikes)
4. Combinatorial optimization (y i k e s)
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Extensions

We will see in class applications of linear programming and 
optimization in general.

In particular, the problem of auction design can often be 
converted into a corresponding optimization problem.

Can you think of an example?


