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We formally define a single-parameter sealed-bid auction. This auction
format is defined by two rules, an allocation rule and a payment rule.
Using this formal framework, we state our auction design goals.

1 Auction Model

We study an auction with a set of n ≥ 2 participating agents (bid-
ders). We assume the environment is single-parameter, meaning the
agents can be characterized by but one parameter. First- and second-
price auctions for but one good can easily be modelled this way. But
we also often model auctions for multiple goods in this way, such as
advertising slots on a web page, because there are tools available for
the design of single-parameter auctions that are not straightforward
to extend to the multi-parameter case.

We adopt the IPV model, so that each agent i ∈ [n] has valuation vi

drawn from continuous distribution Fi, with support Ti = [v i, v i], for
some v i, v i ∈ R+. An agent’s valuation is their private information,
which, by assumption, can be described by a single parameter.

Each agent i employs a strategy si : Ti → Bi, which, as usual,
is a function from their space of possible values to their space of
possible actions, which, in an auction, are bids. It is assumed that
bids are submitted to the auctioneer in sealed envelopes, so that
no bidder knows what any other has bid. Given a profile of values
v = (v1, . . . , vn), the vector of bids submitted to the auctioneer is
denoted b = (b1, . . . , bn) ≡ (s1(v1), . . . , sn(vn)).

Given a bid profile, the auctioneer computes allocations and pay-
ments according to the auctions’ rules. The allocation rule describes
how the winner(s) of the auction is determined; the payment rule de-
scribes what the participants pay. We write x(b) = (x1(b), . . . , xn(b))

to denote the allocation, and p(b) = (p1(b), . . . , pn(b)) to denote
payments. In particular, xi(b) denotes bidder i’s allocation,1 and 1 When goods are divisible, bidder

i’s allocation may be fractional. Al-
ternatively, xi(b ) may represent the
probability with which bidder i is
allocated an indivisible good.

pi(b) ∈ R+ denotes bidder i’s payment. We call the pair (x(b), p(b))

the outcome of the auction.
Finally, we assume a quasi-linear model of agent utility,2 where

2 A quasi-linear function is linear in
one variable, called the numeraire.
A numeraire is a basic standard for
measuring value (e.g., money).

ui(b ; vi) = vixi(b) − pi(b). We almost always abbreviate utility as
follows: ui(b) ≡ ui(b ; vi). Further, when the bidding profile is clear
from context, we often write: ui = vixi − pi.
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First- and Second-Price Auctions In the two sealed-bid auctions
of primary interest, namely first- and second-price auctions, the
space of possible bids contains the space of possible values: i.e.,
Ti ⊆ Bi, for all bidders i ∈ N. Upon receiving bids in sealed en-
velopes, the auctioneer selects as the winner a bidder with the high-
est bid, i∗ ∈ arg maxi∈N bi, allocating to this winner with probability
xi∗(bi∗ , b−i∗) = 1, and breaking ties, as necessary.3 3 Ex-ante, each bidder in arg maxi∈N bi

is allocated with probability
1

|arg maxi∈N bi |
.

Let b(k) denotes the kth-order statistic, meaning the kth-largest
draw among n samples. In particular, b(n) and b(n−1) denote the
highest and second-highest bids, respectively.

In the first-price auction, the winner of the auction, i∗, is charged
their bid (i.e., the highest bid), pi∗(bi∗ , b−i∗) = b(n), and all other
bidders i 6= i∗ ∈ N are charged pi(bi, b−i) = 0.

In the second-price auction, the winner of the auction, i∗, is charged
the second-highest bid, pi∗(bi∗ , b−i∗) = b(n−1), and all other bidders
i 6= i∗ ∈ N are charged pi(bi, b−i) = 0.

2 Design Goals

There are (at least) three desireable properties of an auction:

Incentive Guarantees The first goal pertains to incentives. In order to
compare competing auction designs, we must be able to predict the
outcome of an auction, which in turn means, predicting the strategic
behavior of the agents in the auction. If we make our auctions simple
for agents to reason about, then we may have a better chance of pre-
dicting what agents will do. Bidding truthfully is always an option,
so one way to make things simple is to ensure that bidding truthfully
is an equilibrium strategy. When this property holds, an auction is
said to be incentive compatibile.

Another natural incentive criterion of auctions (actually mecha-
nisms, more generally) is called individual rationality. This property
ensures that no participant can be made worse off by participating
in the auction. In other words, all bidders’ utilities are guaranteed to
be non-negative. Like incentive compatibility, individual rationality
can hold either ex-ante or ex-post. In the former case, it is sometimes
called Bayesian individual rationality.

Economic Performance Guarantees The second goal is that the auc-
tion format achieve some objective. A popular choice is welfare
maximization.4 Welfare is defined as the total expected utility of 4 When welfare is maximized, an

economy is said to be efficient.all participants, including the auctioneer, which assuming incentive
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compatibility so that b = v , can be written as follows:

Ev

[
∑
i∈N

ui(v) + ∑
i∈N

pi(v)

]
= Ev

[
∑
i∈N

(vixi(v)− pi(v)) + ∑
i∈N

pi(v)

]

= Ev

[
∑
i∈N

vixi(v)

]
Revenue maximization is a popular alternative (Think Amazon, Face-
book, Google, etc.). Revenue is defined as the total expected pay-
ments, only:

Ev

[
∑
i∈N

pi(v)

]

Computational Performance Guarantees In addition to aiming for eco-
nomic efficiency, we also aim to design auctions that are computa-
tionally efficient, meaning they run in polynomial time and space.

The allocation algorithm for first- and second-price auctions—
namely, allocate to the highest bidders—satisfies this requirement: it
is O(n) in time and space in the worst case. (There may be an n-way
tie, and a tie-breaking rule may randomly select among all the tied
bidders.) Similarly, calculating payments in these auctions is O(n) (or
O(1), if you store the results of solving allocation problem).

3 A Solution via Mathematical Programming

A k-good auction is one in which k copies of a homogeneous good
are on offer. Thus, it is a natural generalization of the usual first- and
second-price auction setting.

Solving for the welfare- (or revenue-) maximizing k-good auc-
tion can be viewed as a constrained optimization problem. Let
F = ∏i∈[n] Fi. Total expected welfare is then:

E
v∼F

[
∑
i∈N

vix(vi, v−i)

]
,

while total expected revenue is:

E
v∼F

[
∑
i∈N

pi(vi, v−i)

]
.

In both cases, the decision variables are the allocation rule x and
payment rule p .

The constraints are as follows:5 5 Because of incentive compatibility, we
assume everyone bids their true value:
i.e., bi = vi , ∀i ∈ N.1. Incentive compatibility. Truthful bidding maximizes utility.6
6 Here, we are assuming Bi = Ti , ∀i ∈ N.

ui(vi, v−i) ≥ ui(ti, v−i), ∀i ∈ N, ∀vi, ti ∈ Ti, ∀v−i ∈ T−i;
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2. Individual rationality. Utility is non-negative (assuming truthful
bidding, which is ensured by the IC constraints):

ui(vi, v−i) ≥ 0, ∀i ∈ N, ∀v ∈ T;

3. Allocation constraints. The allocation variables vary with the
auction set up. In a k-good auction, they are 0/1 variables in prin-
ciple, but as there could be ties, we represent them as probabilities.

The probability of winning must be in [0, 1]:

0 ≤ xi(vi, v−i) ≤ 1, ∀i ∈ N, ∀v ∈ T.

4. Ex-post feasibility. Goods are not overallocated:

∑
i∈N

xi(vi, v−i) ≤ 1, ∀v ∈ T;

One of these objective functions together with these constraints
comprise a mathematical program that can be used to solve for an
optimal k-good auction. The good news is, the objective function and
the constraints are linear. The bad news is, there are an exponential
number of constraints (assuming we discretize the value space). But
do not despair. Roger Myerson won a Nobel prize in part for his
elegant solution to this auction design problem. Stay tuned!
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