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A collection of items is to be distributed among several bidders, and
each bidder is to receive at most one item. Assuming that the bidders
place some monetary value on each of the items, it has been shown
that there is a unique vector of equilibrium prices that is optimal, in a
suitable sense, for the bidders. In this paper we describe two dy-
namic auction mechanisms: one achieves this equilibrium and the
other approximates it to any desired degree of accuracy.

I. Introduction

Recent studies by Demange (1982), Leonard (1983), and Demange
and Gale (1985) have considered an allocation mechanism that turns
out to be a generalization of the well-known “second-price” auction
first described by Vickery (1961). Recall that in this auction the partic-
ipants submit sealed bids for a single item, and the item is sold to the
highest bidder at a price equal to the second highest bid. In order to
describe the multi-item generalization of this mechanism it is conve-
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nient to think of the second-price scheme as an ordinary competitive
equilibrium. At the chosen price the item is demanded by only one
“consumer,” the highest bidder, and, since there is only one item, this
yields a balance of supply and demand. The important property of
the second highest bid is that it is the smallest equilibrium price since
for any smaller price at least two bidders would demand the item.

In the multi-item generalization it is assumed that each bidder is
interested in acquiring at most one item, as might be the case if, for
example, the auction was designed to assign individuals to positions,
as considered by Leonard (1983). Each bidder is assumed to place a
monetary value on each of the items, and, given a price vector, he will
demand that item or those items that maximize his surplus, the differ-
ence between his valuation and the price of the item, assuming that
this surplus is positive. A price vector then yields equilibrium if every
bidder can be assigned an item in his demand set and no two bidders
are assigned the same object. It is an interesting and by no means
obvious fact that (a) the model always has an equilibrium, and (b)
among the equilibrium price vectors there is a unique one, p, that is
smallest in the strong sense that p is at least as small in every compo-
nent as any other equilibrium price vector. Thus, p is the “best” equi-
librium price vector from the point of view of the bidders. This obser-
vation is due to Shapley and Shubik (1972).

The multi-item auction mechanism requires each bidder to submit
a sealed bid listing his valuation of all the items. The auctioneer then
allocates the items in accordance with the minimum price equilib-
rium. A main point of the papers cited in our first paragraph is that
the important “incentive capability” of the single-item auction carries
over to the multi-item case, meaning that submitting true valuation is
a dominant strategy for the bidders. (More generally [Demange and
Gale 1985], by jointly falsifying valuations, no subset of bidders can
improve the outcome for all its members.)

The purpose of this note is to show that there is another familiar
property of the single-item auction that generalizes to the multi-item
case. Namely, instead of a one-shot sealed bid auction it is possible to
achieve (approximately) the minimum equilibrium price allocation by
“dynamic” or, as we shall call them, “progressive” auctions. These are
natural generalizations of the familiar auctions that occur in practice,
say, at Sothebys or Park-Bernet, in which the auctioneer system-
atically raises the price of an item until all but one of the bidders has
dropped out. In these auctions the sale price will then be approxi-
mately the second highest bid since, presumably, the highest bidder
will try to outbid the competition by as small an amount as possible.

We shall present here two different dynamic auction mechanisms
for the multi-item case. The first will be the more structured of the
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two and will produce in a finite number of steps the exact minimum
price equilibrium. The second mechanism will imitate almost exactly
the usual free-for-all that occurs at real auctions and will lead to a final
allocation that can be made as close as one wishes to the minimum
price equilibrium. Both of these mechanisms have already appeared
in the literature. The first is a variant of the so-called Hungarian
method of Kuhn (1955) for solving the optimal assignment problem,
while the second is a special case of the algorithm of Crawford and
Knoer (1981). We will describe these mechanisms in the next section
and prove their convergence properties in the final sections.

Aside from the theoretical interest, it may be of some practical use
to have available the progressive as well as the sealed bid mechanisms.
In particular, the sealed bid mechanism operates on the assumption
that a bidder’s utility is of the simple linear surplus type already
described, but this is a rather special case. For example, if a worker
must choose between taking job A at salary a or job B at salary 8, it
seems rather unlikely that he would make the decision by comparing
the difference between the salaries offered and the minimum salary
he would accept for each job. The dynamic mechanisms allow for a
much wider range of preferences for the bidders. It is also known
(Crawford and Knoer 1981; Demange and Gale 1985) that even for
quite general preferences there is a minimum equilibrium price. The
results given here suggest that for small enough bid increases our
progressive auctions will lead to prices approximating the minimum
price equilibrium. However, our results are given here only for the
linear surplus case. The analysis for more general preferences re-
mains a problem for future investigation.

II. The Progressive Auction Mechanisms

In actual auctions the seller of an item as well as the bidders plays a
role in determining the outcome, in that the seller usually specifies
some reservation price, this being the minimum price he will accept
for his item. In our model it is therefore assumed that for each item «
there is such a minimum sale price s(a). Further, in general, at the
minimum equilibrium price some items may remain unsold. This
leads to the following additional requirement for a price equilibrium:
If item « is unsold, then its price p(a) must equal the sale price s(a).
Clearly this condition is required for equilibrium since, if p(a) exceeds
s(a), there would be excess supply and the seller of item a would want
to lower its price.

In both the mechanisms to be described we start with an initial price
vector py announced by the auctioneer and equal to the vector of sales
prices s. We first describe what we will call the “exact auction mecha-
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nism.” We suppose that all prices and valuations are integers. The
unit of price could be, say, dollars or hundreds of dollars depending
on the type of item being auctioned. Each bidder now announces
which item or items he wants to buy at the initial prices. If it is possible
to assign each item to a bidder who demands it, one already has the
desired equilibrium. If no such assignment exists, the procedure de-
pends on a celebrated theorem of combinatorics due to Hall (1935).
We will say that a set of items is overdemanded if the number of
bidders demanding only items in this set is greater than the number
of items in the set. Clearly a necessary condition for the existence of
an equilibrium assignment is that there be no overdemanded set.
Hall's theorem asserts that this condition is also sufficient. A short
proof of this result can be found, for example, in Gale (1960), which
also describes an efficient algorithm that finds either an equilibrium
assignment or an overdemanded set. In fact, the algorithm actually
locates a minimal overdemanded set, that is, an overdemanded set
with the property that none of its proper subsets is overdemanded.
Now the auctioneer (probably with the aid of a computer) locates such
a minimal overdemanded set and then raises the price of each item in
the set by one unit. He then again elicits the demands of the bidders
in some systematic way. For example, he might announce each item in
turn and ask which bidders are interested in buying it at its current
price. (Note that a bidder expresses interest in more than one item if
and only if they both maximize his surplus at the given prices.) After
the new bids are announced, the auctioneer again finds either a com-
plete assignment or a new minimal overdemanded set, whose prices
he again raises. Now it is clear that this second alternative cannot
occur indefinitely because, as soon as the price of an item becomes
sufficiently large, say, higher than any of the bidders’ valuations for it,
the item cannot belong to any overdemanded set. It follows that for
some set of prices there will be an equilibrium assignment. We have
thus, in fact, proved the existence of equilibrium. Of course, this
proof depended on using Hall's theorem. What is not so obvious is
that the prices obtained in this way are the minimum equilibrium
prices. This will be proved in the next section.

We remark that, in order for the mechanism to work and lead to
the minimum price equilibrium, it is necessary for the bidders to be
quite precise in their responses to changing prices. Namely, we must
assume that at each stage of the auction each bidder demands all
items that maximize his surplus at the current prices. So, for example,
if a bidder demands only one item at some step he must also demand
that item, and possibly others, at the next step. He cannot switch in
one step from one item to a different one. This is a consequence of
the requirement that his valuations are integral numbers of units. For
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this reason the exact auction mechanism would seem difficult to im-
plement in realistic situations as contrasted with the method we de-
scribe next.

In the “approximate auction mechanism” the auctioneer again an-
nounces an initial sales price. At this point any bidder may bid for any
item. When he does so he is said to be committed to that item, which
means he commits himself to possibly buying the item at the an-
nounced price. The item 1is said to be (tentatively) assigned to that
bidder. At a general stage of the auction some subset of bidders will
be committed to some subset of items at some set of prices. At this
point any uncommitted bidder may (i) bid for some unassigned item,
in which case he becomes committed to it at its initial price; (i) he may
bid for an assigned item, in which case he becomes committed to that
item, its price increases by some fixed amount 9, and the bidder to
whom it was assigned becomes uncommitted; or (iii) he may drop out
of the bidding. If one wishes to structure this procedure the auc-
tioneer could call on the uncommitted bidders, say in alphabetical
order, requiring them to choose one of the three alternatives listed
above. The auction terminates when there are no more uncommitted
bidders, at which point each committed bidder buys the item assigned
to him at its current price.

One can imagine that this sort of auction would be appealing to the
bidders for it does not require them to decide in advance exactly what
their bidding behavior will be. Instead, at each stage a bidder can
make use of present and past stages of the auction to decide his next
bid. Of course, the outcome of this auction may depend on the order
in which people bid. However, our result for this case shows that this
variation is limited. More precisely, if people behave in accordance
with linear valuations we show that the final prices will differ from the
minimum  equilibrium price by at most k8 units, where & is the
minimum of the number of items and bidders. Thus, by making &
(the unit by which bids are increased) sufficiently small, one can come
arbitrarily close to the minimum equilibrium price.

In analyzing the outcome of these two auction mechanisms in the
following sections we will always suppose that the bidders behave in
accordance with the linear surplus utility functions described in the
Introduction. That is, in the case of the exact mechanism each bidder
announces (honestly) at each stage the item or items whose value to
him exceeds its current price by the largest amount. In the approxi-
mate mechanism he computes the difference between his value of an
item and its initial price if it is unassigned or its price plus 8 if it is
assigned, and he chooses an item for which this difference (his sur-
plus) is a maximum. (We will not consider here possible “manipula-
tive” behavior in which a bidder at some stage may choose an item
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that is not his most preferred. Such behavior for the sealed bid auc-
tion is the main subject of Leonard [1983] and Demange and Gale
[1985].)

In the next section our results are presented in the form of four
theorems. The accompanying proofs are intended for readers who
may wish to pursue these matters in more detail.

III. Convergence of the Exact Auction
Mechanism

Let B be the set of bidders and let I be the set of items. For each item o
in I there is a sale price s(a). The value of item a to bidder b is v, = 0.
A feasible price vector p is a function from [ to R™ such that p(a)
= s(a). It is convenient to assume that there is a null item a whose
value is zero to all bidders and whose price is always zero. The de-
mand set of b at price p is defined by

Dy(p) = {a|vea — pla) = max [vss — p(B)I}-

The price p is called competitive if there is an assignment p from
B 1o I such that p(b) € Dy(p), and if b’ # b and p(b) = w(b'), then p(b)
= ag. The pair (p, ) is an equilibrium if this condition is satisfied and
also the following condition: if a € w(B), then p(a) = s(a).

We will show that the exact auction mechanism converges to the
minimum competitive price p. Finally, we show that p can then be
chosen so that (p, p) is an equilibrium.

THEOREM 1. Let p be the price vector obtained from the exact
auction mechanism and let q be any other competitive price. Then
P=q

Proof. By contradiction, suppose p % q. Now at stage ¢t = 0 of the
auction we have py = 050 po = q. Let ¢ be the last stage of the auction
at which p, = q, $; = {afp,+1(@) > g(@)}, and S be the overdemanded
set whose prices are raised atstage ¢t + 1. Thus § = {alpi+1(a) > pla)},
s0 §; C S. We will show that § — §; is nonempty and overdemanded;
hence § is not a minimal overdemanded set, contrary to the rules of
the auction.

Define T = {b|Dy(p,) C S}. Since S is overdemanded, this means
exactly that

|71 > 1S]. (1)

Define T, = {b|b € T and Dy(p,) N S| # &}. We claim that Dy(q) C S,
forall bin T;. Indeed, choose ain §; N Dy(py). If B & S, then b prefers
o to B at price p, because b € T. But p,(B) = ¢(B) and p(a) = g(B), so b
prefers a to B at price q. On the other hand, if B €S — §, then b likes
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a at least as well as B at price p,. But p,(B) < p,+1(B) = ¢(B)—and, again,
pa) = g(a)—so b prefers a to B at price q, as claimed. Now since q is
competitive, there are no overdemanded sets at price q, so

IT\| = [S4]. (2)

Now T — T, = {blb € T and Dy(p,) € S — S;}. But from (1) and (2),
|T — Ty| >|S — Si|, so S — S, is overdemanded, giving the desired
contradiction. Q.E.D.

TueEoREM 2. If p is the minimum competitive price then there is an
assignment p* such that (p, p*) is an equilibrium.

Proof. Let p be an assignment corresponding to p. We call an item «
overpriced if it is not assigned but p(a) > s(a). If (p, p) is not an
equilibrium, there is at least one overpriced item. We will give a pro-
cedure for altering p so as to eliminate overpriced items. For this
purpose we construct a directed graph whose vertices are B U I.
There are two types of arcs. If w(b) = a there is an arc from b to a. If
o € Dy(p) there is an arc from « to b. Now let a; be an overpriced item.
Then a; € Dy(p) for some b, for if not one could decrease p(a) and still
have competitive prices. Let B U I be all vertices that can be reached
by a directed path starting from «a;.

Case I.—Set B contains an unassigned bidder, b. Let (a0, agbs, . . .,
oy, b) be the path from a to 4. Then we may change p by assigning 6,
toay, bg to ag, . . ., b to oy. The assignment is still competitive and «; is
no longer overpriced, so the number of overpriced items has been
reduced.

Case 2.—All b in B are assigned. Then we claim that there must
be some a in I such that p(a) = s(a), for suppose not. By definition of
B U I we know that if b & B then b does not demand any item in /.
Therefore, we can decrease the price of each item in I by some posi-
tive ¢ and still have competitiveness, contradicting the minimality of p.
So choose a € I such that p(a) = s(a) and let (a, by, @, bg, . . . , by, @) be
the path from «; to a. Again change w by assigning 4, to «; for all i,
leaving a unassigned. Again the number of overpriced items has been
reduced. Q.E.D.

IV. Convergence of the Approximate Auction
Mechanism

In this section we show that the final price of an item using the
approximate auction mechanism will differ from the minimum equi-
librium price by at most k3, where & = min(|/|, |B|). We will prove this
in two parts. If p is the minimum equilibrium price and p is the final
auction price, we first show that p(a) can exceed p(a) by at most £3.
This is a consequence of the following theorem.
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‘THEOREM 3. No bidder bids for an item « if its price at time ¢ is p,(a)
= p(a) + kd.

We need some preliminary results. Let us call an item « expensive
at ime ¢ if p(a) > p(a). Let p be any assignment corresponding to p.

LeEmMMA 1. If b bids for an expensive item a, then he is assigned by w.

Proof. 1f b were unassigned, then vy, — pla) = 0. Thus, v, — plar)
= 0 since a is expensive. Therefore, b would not bid for « at time ¢.
Q.E.D.

Lemma 2. If w(b) = o and b bids for B at time ¢, then pla) — p(a)
= pdB) — p(B).

Proof. We have v,5 — pt(B) = v — pla) since b bids for B but also

— pla@) = vg — p(B) since p(b) = a, and adding these inequalities

glves the asserted result. Q.E.D.

"To prove theorem 3, suppose b, bids for a when p(a) = p(a) + k3.
Then a is expensive, so from lemma 1, b, is assigned under p to some
item a; (possibly a; = a). From lemma 2,

par) — play) = plo) — pla) = kd. 3)

So play) = p(ay) + kS > p(a;) = s(at;). Thus some bidder bs is assigned
to a; at time ¢t. Then £ > 1, for if not, @« = a; and a; would be
expensive. Therefore, by should be matched to some item by ., which
is a contradiction since b; # by. Therefore, b, must have bid for a; at
price pa;) — 3 = p(ay) + (k — 1)d > p(a)), so a; was expensive. By
lemma 1, by is assigned under p to some . Since b, and by are both
assigned, we have k = 2. Again from lemma 2, plag) — plog) = pioaxy)
=3 = play) = (k — 1)3, 50 plag) = plag) + (k — 1)8 > plas) = s(atg).
So some b3 is committed to oy at price pag). Then k > 2, for if not
a € {a;, ag} and ap would be expensive, and so bs should be matched
by w, which is a contradiction. So b3 must have bid for as at price
plag) — 3 = p(ag) + (k — 2)d > p(a), so ag was expensive, so by lem-
ma 1, bs is assigned by w to some as, so k = 3. It is clear that this
process can never terminate. Thus & is unbounded, which is impos-
sible. Q.E.D.

Now let p be the final price for an approximate auction. We must
show that no price will be very much lower than the minimum equilib-
rium price p.

THEOREM 4. For any item a, p(a) pla) — kd, where & = min
(11, |BI).

Proof. We will show that if there is some «; such that [3(0(1) <p(a;) —
kd then there must be more than % items a such that pa) > s(a). This
would contradict equilibrium since at most k items can be assigned. By
assumption, p(a;) = ;b(al) + (B + 1)d > s(ay), so a is assigned under
W, say to b;. Now there must be some other bidder b who demands «;
at price p for if not one could decrease p(a;) and still have equilib-
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rium. It follows that b} is committed at f) to some item oy and ;5(0(2) =
plas) — kd; namely,

Uploy — [3(012) = Uplo, — I;(Oll) -3
and
Upja, — P(Q1) = Vg1, — plata).

Adding gives
plag) — plag) = play) — play) — d = kS.

It follows that p(ag) = 13((12) + kd > s(ag), so ag is matched at equilib-
rium, say to bg. Now again there must be some third bidder b5 who
demands either a; or ay for if not p(a;) and p(ag) could be decreased.
Also, as in the previous step, b must be committed to some item as
whose price ;t;(a3) satisfies p(as) — [3(013) = (k — 1)d. Again p(as) = s(a3)
+ (k& — 1)3, so as is assigned at prices p to some b3, and so forth.
Continuing in this way we get £ + 1 assigned items, which is impos-
sible. Q.E.D.

V. A More General Model

The multi-item model treated here is “unsymmetrical” in that each
seller specifies only one number, his reservation price, while buyers
specify |I| numbers, their valuations for each of the items. There are,
however, economically natural situations in which sellers “discrimi-
nate,” specifying different reservation prices to different buyers. In
fact, in the job assignment problem this would be the expected situa-
tion. Here the sellers are workers who are selling their services to
employers. Clearly, the minimum salary a worker would accept might
vary depending on the job; for example, the more disagreeable the
job, the higher the minimum acceptable salary.

How would this greater generality affect our auction mechanisms?
Not very much. The only real difference would be that at each stage
the auctioneer would specify not a vector of current prices but a
matrix (s,,) of current salaries, where s, is the salary w would demand
if he were to accept jobj. Given such a matrix it is clear how employers
would behave in order to maximize their profits. Employer j would
choose that worker or those workers for whom v,; — s,; was a max-
imum, and overdemanded sets of workers, uncommitted employers,
and so forth could be defined exactly as before. The price-raising
mechanism would also operate as before so that if w belonged to an
overdemanded set then s,; would increase by one for all j. Similarly in
the approximate mechanism, if an uncommitted employer bids for a
tentatively assigned worker his salaries s,,; all increase by 8.
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Actually there is a rather simple transformation that reduces this
seemingly more general case to the one already treated. If a,,; is the
minimum salary w would accept for jobj and b, is the maximum that
employer j would pay w, then let ¢,; = b, — ay, and consider the
multi-item auction with valuation matrix (c,;) and reservation prices
zero. Now if p is any price vector for this model the corresponding
salary matrix for the general model is given by s,,; = p; + a.,;. We leave
it to the reader to verify that this transformation indeed establishes
the equivalence of the two models.
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