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We introduce a new multi-parameter setting, for which we can find an
approximately welfare-maximizing EPIC auction. We prove the EPIC
property by making use of our recipe for doing so: 1. we prove sincere
bidding in the auction yields an approximate VCG outcome, and 2. we
show consistent bidding strategies dominate inconsistent ones. Not
only does this mechanism satisfy desired performance and incentive
guarantees (up to some additive error), it is also tractable.

1 Diminishing Marginal Valuations

We introduce a new instance of the multi-parameter setting, so-called
diminishing marginal valuations for homogeneous goods. Rather
than additive or unit-demand valuations, here each bidder’s marginal
value for an additional copy of the good is non-increasing. Formally,

• We assume n bidders and m identical goods, with bidders indexed
by i, and goods, by j.

• Each bidder i has a marginal value µi(j) for its jth copy of the
good, meaning its value for acquiring a jth copy of the good, given
they already have j− 1 copies in its possession.

• Each bidder i’s marginal values are non-increasing: µi(1) ≥
µi(2) ≥ · · · ≥ µi(m).

Our goal is to construct an approximately welfare-maximizing EPIC
multi-unit ascending auction for this scenario.

2 A Direct Mechanism: A Sanity Check

By the revelation principle, a welfare-maximizing DSIC direct mech-
anism “reduces to”1 a welfare-maximizing EPIC indirect mechanism, 1 See Appendix A

in the sense that a polynomial-time solution to the latter can be used
to construct a polynomial-time solution to the former. Therefore,
solving for an EPIC indirect mechanism with all our desiderata is at
least as hard as solving for a DSIC direct mechanism with the same
desiderata. In other words, if no such DSIC direct mechanism exists
(one that is welfare-maximizing in polynomial time), neither can such
an EPIC indirect mechanism.

As a result of this argument, before we embark upon the design of
an EPIC indirect mechanism that maximizes welfare in polynomial
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time, we best do a quick sanity check: can we design a DSIC direct
mechanism that maximizes welfare in polynomial time?

Fortunately, we can solve this problem in the affirmative in the
direct setting. In particular, the welfare-maximizing allocation can be
computed via a simple greedy allocation algorithm:

• Collect a vector of bids b from all bidders i ∈ N, with bid bi(j)
representing i’s bid on the jth copy of the good.

• Sort the bids, and then allocate the goods to the bidders who sub-
mitted the highest m bids, breaking ties arbitrarily.

For example, if bi(4) is among the highest m bids, but bi(5) is not,
then bidder i is allocated four goods, which we denote as xi = 4.

As usual, to achieve the VCG outcome, we combine this allocation
algorithm with payments that charge bidders their externalities.
For each bidder i, we sort the bids by bidders other than bidder i from
greatest to least, and then establish the following groupings.

β1 β2 · · · βm−xi︸ ︷︷ ︸
A

βm−xi+1 βm−xi+2 · · · βm︸ ︷︷ ︸
B

βm+1 βm+2 · · · βmn︸ ︷︷ ︸
C

The bids in group A are those that are allocated regardless of i’s pres-
ence. The bids in group C are those that are not allocated regardless
of i’s presence. The bids in group B are those whose allocation de-
pends on i’s presence. These bids comprise bidder i’s externality. We
therefore charge bidder i, in total, for all xi goods in group B, the
sum of these xi bids: i.e.,

pi(xi) =
xi

∑
j=1

βm−xi+j.

By charging each bidder its externality, we charge the VCG pay-
ments, thereby guaranteeing the DSIC property.

Once again, when bidder i is allocated xi copies of the good, its
VCG payment is the sum of xi bids, one per copy of the good. We
can interpret these bids as follows: the smallest bid is bidder i’s pay-
ment for its first copy of the good; the second-smallest bid is its pay-
ment for its second copy of the good; and so on. Note that payments
for additional copies are non-decreasing, although values are (by as-
sumption) non-increasing. Payments are non-decreasing because the
first copy allocated to bidder i displaces only bid βm, whereas the
second copy displaces bid βm−1 ≥ βm, and so on.

Building on these observations, we can express bidder i’s VCG
payment for good j in terms of the other bidders’ demand sets. De-
fine bidder k’s demand set at price q, Dk(q) = maxj { j ≤ m | vk(j) ≥ q }.
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Now, the price of bidder i’s jth copy is given by:

pi(j) = inf

{
q

∣∣∣∣∣ ∑
k 6=i

Dk(q) ≤ m− j

}
. (1)

This price is the price at which the demand of all other bidders falls
below m − j. As expected, these prices are again non-decreasing.
Each additional copy of the good costs no less than the previous, as
other bidders’ demands fall as the price rises.

3 An Indirect Mechanism: The Clinching Auction

Having satisfied the precondition for potential success, we now set
our sights on an EPIC welfare-maximizing ascending auction. We
present the following auction, called the clinching auction:2 2 Lawrence M. Ausubel. An efficient

ascending-bid auction for multiple
objects. American Economic Review,
94(5):1452–1475, December 2004

• Initialize q = 0.

• Collect demand sets from all bidders. (Initially, when q = 0, it
should be that Di(q) = m, for all bidders i.)

• Alternate between incrementing q by ε and collecting demand sets
from bidders until ∑n

i=1 Di(q) ≤ m.

• Activity rule: Ensure that no bidder’s demand increases over time:
i.e., bidder’s demands can only decrease as prices increase.

• Allocate to bidder i its final demand, namely Di(q) goods. If
unallocated goods remain, allocate them randomly to bidders
i with leftover demand at price q − ε: i.e., bidders i for whom
Di(q− ε)− Di(q) > 0.

• Charge bidder i (within ε of) its externality. Specifically, charge
bidder i for its jth good:

qi(j) = −ε + min
t∈Z+

{
εt

∣∣∣∣∣ ∑
k 6=i

Dk(εt) ≤ m− j

}
. (2)

As intended, this price is again (near) the price at which the de-
mand of all other bidders falls below m− j.

N.B. When ∑k 6=i Dk(εt) = m − j, it is not necessary to subtract ε

from εt. But when ∑k 6=i Dk(εt) < m− j, the situation is analogous
to the last remaining bidders dropping out at the same time in an
English auction for one good, in which case the good is sold at the
final price less ε to ensure individual rationality.
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Example 3.1. Here is an example of a run-through of the clinch-
ing auction lifted from the paper that introduced it. The example
is loosely based on the first US Nationwide Narrowband spectrum
auction in where there were five bidders and five licenses, with the
constraint that no bidder could win more than three licenses.

The bidders’ marginal values are as follows:

License A B C D E

First 123 74 125 84 44

Second 113 5 125 64 24

Third 103 3 49 7 5

The auction then proceeds as follows, with demands depicted only
at the most relevant prices:

Price A B C D E

10 3 1 3 2 2

25 3 1 3 2 1

45 3 1 3 2 0

50 3 1 2 2 0

65 3 1 2 1 0

75 3 0 2 1 0

85 3 0 2 0 0

At price 65, the demands of all bidders other than bidder A falls
below the total supply of 5. Hence, bidder A “clinches” its first li-
cense at this price.3 The license is said to be clinched because the fact 3 Technically, the price should be 65 less

ε, but we ignore this adjustment factor
in this example.

that the other bidders’ demands have fallen below 5 guarantees that
bidder A will win this license.

At price 75, the demands of all bidders other than bidder A falls
below 4, so A clinches its second license at this price. In addition,
the demands of all bidders other than bidder C falls below 5, so C
clinches its first license at this price. The auction terminates at price
85, when total demand meets total supply. At this price, bidder A
clinches its third license, and bidder C, its second.

In sum, bidder A pays 65 + 75 + 85 for its three licenses, and
bidder C pays 75 + 85 for its two licenses. As expected, prices on
additional licenses are non-decreasing (strictly increasing, in fact).

The outcome of the clinching auction in this example (and always;
see Proposition 4.1) is efficient (up to mε). In contrast, in this exam-
ple, a uniform-price auction4 would not have yielded an efficient 4 A uniform-price auction is one that

charges the same price for all copies of
the good.

outcome, as it would have been in bidder A’s best interest to decrease
its demand to two licenses when the price reached $75 rather than
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win all three licenses for $85 each. Winning only two licenses, A’s
utility would have been 236− 150 = 86, whereas winning all three,
A’s utility would have been 339− 255 = 84.

4 The Clinching Auction is EPIC

To prove the clinching auction is approximately EPIC, we follow
the design recipe for EPIC auctions. That is, we first show that the
outcome of sincere bidding in the clinching auction is approximately
VCG (both allocation and payments; Steps 1 and 2 of the design
recipe, respectively). We then show that no inconsistent deviations
are preferable to sincere bidding (Step 3).

Regarding Steps 1 and 2, by design (Equations 1 and 2), each VCG
price lower bounds the corresponding price in the clinching auction
up to ε. Thus, it sufficies to show the corresponding upper bound,
and to show that any allocation arrived at via the clinching auction
is welfare maximizing up to mε. The proof of this latter claim (i.e., of
the following proposition) is nearly identical to the proof that sincere
bidding in an m-good English auction yields total welfare within mε

of the optimal, assuming unit-demand valuations.5 5 Homework 8, Problem 3, Part 1

Proposition 4.1. Assuming sincere bidding, the clinching auction yields
total welfare within mε of the optimal.

To show that VCG prices upper bound the prices in the clinching
auction up to mε assuming sincere bidding, we actually show that
utility in a VCG auction lower bounds utility in the clinching auction
assuming sincere bidding, up to mε. If each bidder’s utility in the
former is not very different than its utility in the latter, then prices
cannot be very different either. (We switch from proving an upper
bound to proving a lower bound, because prices are negated in utility
calculations.)

Theorem 4.2. An arbitrary bidder’s utility in a VCG auction is bounded
above by its utility in the clinching auction plus mε, assuming all bidders
bid sincerely.

Proof. By Equation 1, the utility of bidder i in the VCG auction, as-
suming truthful bidding, is given by:

xi

∑
j=1

(µi(j)− pi(j)) . (3)

Similarly, by Equation 2, the utility of bidder i in the clinching
auction, assuming sincere bidding, is given by:

yi

∑
j=1

(µi(j)− qi(j)) . (4)
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In these expressions, xi (yi) is the number of copies of the good
that bidder i wins in the VCG (clinching) auction. For all copies
j of the good that bidder i wins in both auctions, µi(j) − qi(j) ≥
µi(j) − pi(j), because qi(j) ≤ pi(j) by definition. The proof thus
concentrates on the cases where xi and yi differ, xi < yi and yi < xi.
In particular, we show the following:

• To the extent that yi < xi (i.e., bidder i wins fewer copies in the
clinching auction than in VCG), the value added by any term that
appears in Equation 3 but not in Equation 4 is bounded above by
ε, so that in total any missing terms (i.e., missing copies of the
good) can forego at most mε > 0 utility for bidder i.

• To the extent that yi > xi (i.e., bidder i wins more copies in the
clinching auction than in VCG), the value added by any term that
appears in Equation 4 but not in Equation 3 is bounded below by
0, so that in total any extra terms (i.e., extra copies of the good)
always contribute at least 0 utility for bidder i.

Upper Bound. Consider a copy j of the good for which µi(j) −
pi(j) > ε. Then the price q at some point during the clinching auction
is such that µi(j) > q (i.e., Di(q) ≥ j) and ∑k 6=i Dk(q) ≤ m − j.
Therefore, i wins at least j copies of the good upon termination.
Equivalently, as per the contrapositive, if i does not with the jth copy
of the good, then µi(j)− pi(j) ≤ ε.

Lower Bound. Let q∗ denote the final price in the clinching auc-
tion. If i wins at least j copies of the good, then Di(q∗ − ε) ≥ j: i.e., i
demanded at least j copies when the price was q∗− ε. In other words,
µi(j) ≥ q∗ − ε. Moreover, q∗ − ε ≥ qi(j), because either j = m (i wins
the last good), in which case q∗ − ε = qi(j) (i pays the final price less
ε), or j < m, in which case q∗ − ε > qi(j). Either way, µi(j) ≥ qi(j), so
bidder i’s utility for each of the j copies it wins is non-negative.

Having completed Steps 1 and 2 of the EPIC auction design recipe,
we have established that sincere bidding in the clinching auction
is an EPNE up to mε, among consistent strategies. The remaining
piece of this puzzle, then, is to further show that sincere bidding in
the clinching auction is an EPNE up to mε, among consistent and
inconsistent strategies: i.e., that no inconsistent deviations would
yield substantially greater utility than sincere bidding. This claim is
established in the following theorem.

Theorem 4.3. The clinching auction is EPIC, up to mε.

Proof. Assume all bidders except bidder i bid sincerely. Conse-
quently, other bidders’ behaviors are not impacted by i’s strategy.
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Moreover, i’s payments are dictated entirely by the other bidders’
demands, which again, i cannot influence.

Under these circumstances, we argue that i cannot benefit from
bidding inconsistently. To bid inconsistently in the clinching auction
would be to report false demand sets. But, given the activity rule,6 6 At long last, we discover the pur-

pose of the activity rule. It rules out
inconsistent bidding.

which ensures that bidders’ demands never increase, all such reports
are in fact consistent with some valuation or another. So it is not
actually possible to bid inconsistently in the clinching auction.

We have already established that bidding sincerely in the clinching
auction is an EPNE up to mε, among consistent strategies. As there
are no inconsistent strategies, it is likewise EPIC up to mε.

A Reductions: A Primer

There are three steps in the reduction process, from a known hard
problem O (for old) to a new problem N (for new), to show N is also
hard (e.g., NP-hard).

• Pick a known hard problem O.

• Assume a polynomial-time algorithm for the new problem N.

• Derive a polynomial-time algorithm for O using the polynomial-
time algorithm for N as a subroutine.

These three steps lead to a contradiction, as O is known to be hard.
Therefore, there can be no polynomial-time algorithm for N (unless P
= NP).

We apply these three steps to reduce the design of a multi-parameter
DSIC direct auction (i.e., VCG) to the design of a multi-parameter
EPIC indirect auction. We assume general valuations: i.e., we assume
only monotonicity and free disposal.

• Pick designing a multi-parameter DSIC auction (i.e., computing a
VCG outcome), a known hard problem.

• Assume a polynomial-time algorithm for the design of a multi-
parameter EPIC indirect auction.

• We can thus compute a VCG outcome in polynomial time by ap-
plying the revelation principle, because the outcome of the EPIC
indirect auction, in which sincere bidding is an EPNE, would yield
a DSIC direct auction, in which truthful bidding is a DSE (i.e., a
VCG outcome).

These three steps lead to a contradiction, as designing a multi-
parameter DSIC direct auction (i.e., computing a VCG outcome) is
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known to be NP-hard. Therefore, there can be no polynomial-time
algorithm for the design of a multiparameter EPIC indirect auction
(unless P = NP) in the general case.

In the special case of diminishing marginal valuations, or unit-
demand valuations, where computing the VCG outcome is not NP-
hard, this argument merely implies that designing a multi-parameter
EPIC indirect auction is at least as hard as (i.e., is no easier than)—
measured on a complexity theory scale—designing a multi-parameter
DSIC direct auction, because if there were a more efficient solution to the
indirect auction design problem, it would just as well apply to the direct
auction design problem via the revelation principle.
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