Introduction to Approximation Algorithms
CS 1951k/29512

2017-02-04

We informally define the complexity classes P and NP, and state the
conjecture that P # NP. We then introduce approximation algorithms,
and a recipe for analyzing them.

1 P versus NP

After a hard day’s work solving CS1951k homework problems, you
can’t wait to see the latest cute dog' memes on Facebook. You pro-
ceed by opening your favorite browser, and visiting facebook. com.
You enter your login and password, and seconds later, you are ready
for a healthy dose of memes. Life is good!

On the contrary, life would not be so great if, after entering your
credentials (login and password), you had to wait several minutes
(or maybe hours, or days!) to access your account. Likewise, you
wouldn’t be very happy if a program that enumerates all possible
credentials could find yours, in a relatively short period of time.

If that were the case, then your account (and mine) would be very
easy to hack, and Facebook wouldn’t know if you prefer cat or dog
memes—clearly, an undesirable situation!

Note that, checking whether your credentials are valid (Facebook’s
job) is an easy task. On the other hand, blindly trying all possible
combinations could be an impossible task (i.e., it could take forever!).

With an alphabet of just 52 letters, there are something like 1052

pos-
sible credentials,? more than the number of atoms in the universe!3

The guess-and-check structure of this problem is at the heart of the
P versus NP problem, the most celebrated open question in computer
science. This is such a fundamental and important problem that you
could win a million dollars if you were to solve it.#

In a nutshell, a problem is in the class NP (nondeterministic poly-
nomial time), if verifying a proposed solution to the problem is easy,
but generating such a solution is not. In contrast, a problem is in P
(polynomial time) if both verifying and generating a solution is easy.
Here “easy” means, can be accomplished in polynomial time.>

Intuitively, it might seem that validating vs. generating solutions
(e.g., credentials) are fundamentally different computational tasks.

If you feel this way, then you are in the same boat as the majority of
computer scientists today, who conjecture that P # NP. But are these
fundamentally different computational problems; or has sufficient
ingenuity merely eluded us thus far? This is the P vs. NP question.

* Or maybe cat; we are not judging!

* Assuming logins and passwords
must be between 5 and 25 characters,
ignoring duplicate constraints (i.e., that
no two logins can be the same).

3 There are an estimated 10%°
atoms in the universe. http:
//www.wolframalpha.com/input/
?i=number+of+atoms+in+universe
4http://www.claymath.
org/millennium-problems/
p-vs-np-problem

5 We recognize that our explanation is
circular. We are defining these classes
formally; we are only providing infor-
mal intuition about them.


facebook.com
http://www.wolframalpha.com/input/?i=number+of+atoms+in+universe
http://www.wolframalpha.com/input/?i=number+of+atoms+in+universe
http://www.wolframalpha.com/input/?i=number+of+atoms+in+universe
http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/millennium-problems/p-vs-np-problem

INTRODUCTION TO APPROXIMATION ALGORITHMS

2 Algorithmic Design Goals

If it turns out that P # NP, then for so-called NP-hard optimization
problems, it will not be possible to design algorithms that satisfy all
three of the following desiderata:

1. handle any imaginable problem instance;
2. run in polynomial time; and
3. return optimal solutions.

So, we expect to have to relax at least one of these three criteria.
Different relaxations lead to different algorithmic techniques.

If we have reason to believe our algorithm need only handle par-
ticular inputs, then a sensible approach is to relax requirement 1, and
develop algorithms that handle these special cases only.

If instead, we are only willing to relax requirement 2, i.e., not
require polynomial-time solutions, then one might try to exploit
the structure of the solution space to design an optimal algorithm
(e.g., design admissible heuristics for a branch and bound search).
However, this approach does not guarantee that a solution will be
returned in a reasonable amount of time, even if the algorithm tends
to works very well in practice (i.e., on common problem instances).

Relaxing requirement 3 means designing algorithms that are not
guaranteed to return optimal solutions. There are different ways to
relax this requirement. One way is to design an algorithm—usually
called a heuristic—that runs fast, and on any input, and to evaluate
the quality of its solutions empirically. Like the first two approaches,
this approach may yield good results in practice, as heuristics are
often tailored to the problem instances on which they are tested.

Another approach is to design an approximation algorithm, i.e.,
an algorithm whose solution quality is guaranteed to somehow relate
to the optimal solution for any input: i.e., in the worst case. We will
explore this latter approach in the next few lectures.

3 Recipe for Analyzing Approximation Algorithms

Like the design of any algorithm, the design of an approximation
algorithm is an art.® One needs to think hard about the problem at ¢ David P Williamson and David B
hand, construct a reasonable algorithm, and then exploit any appar- Shmoys. The design of approximation
ent structure to complete an analysis. That said, there is a scientific 2011
component to the analysis, insomuch as that there is a generic recipe
that is often followed to make progress. The recipe is as follows:

Call the value of the optimal solution OPT, and the value of the

solution obtained by the approximation algorithm APX.

2

algorithms. Cambridge university press,



INTRODUCTION TO APPROXIMATION ALGORITHMS

1. Upper bound the value of OPT by UB, perhaps by analyzing some
simpler algorithm that is guaranteed to perform better than (or as
well as) OPT: i.e., UB > OPT.

2. Lower bound the value of APX by LB, perhaps by analyzing some
simpler algorithm that is guaranteed to perform worse than (or as
well as) APX: i.e.,, APX > LB.

3. Since OPT > APX, it follows that UB > OPT > APX > LB. So:
APX LB _ LB
OPT — OPT — UB
The holy grail in approximation algorithm research is to design an
. ., LB . L
algorithm for which Up 52 constant, meaning it is independent

of the problem’s inputs. In such cases, we say that we have found
a constant-factor approximation algorithm.

References

[1] David P Williamson and David B Shmoys. The design of approxi-
mation algorithms. Cambridge university press, 2011.



	P versus NP
	Algorithmic Design Goals
	Recipe for Designing Approximation Algorithms

