
AdX Agent Design

Enrique Areyan Viqueira and Amy Greenwald

CS1951k Algorithmic Game Theory

April 14, 2020

AdX Game

I A market with multiple copies of heterogeneous goods (users’
impressions)

I Your agent’s job: procure enough targeted impressions at
the lowest possible cost

Two Sources of uncertainty

I Impressions (Supply)

I Competition (Demand)

Variants of the AdX Game

I One-Day, One-Campaign

I Two-Days, Two-Campaigns

Modeling the game. Example: One-Day Game.

Game Elements:

I Let M be a set of market segments, and
π =

〈
π1, π2, . . . , π|M|

〉
a probability mass function where πm

is the probability of drawing m ∈ M.

I A user belongs to a random market segment m ∈ M (e.g.,
old, female) according to π.

I A campaign Cj = 〈Rj ,Bj ,mj〉
demands Rj ∼ r(·) impressions,
from a random market segment mj ∈ M such that mj ∼ G (·),
and has budget Bj ∼ b(·).

I An agent j ∈ A is characterized by its campaign Cj .

Modeling the game. Example: One-Day Game (cont).

A One-Day Game, has N agents, each with a single campaign.

Let ~x =
〈
x1, x2, . . . , x|M|

〉
be a bundle of impressions.

The utility uj of agent j , as a function of bundle ~x , is given by:

uj(~x ,Cj) = ρ(µ(~x ,Cj))− p(~x)

p(~x) is the total cost of bundle ~x ,

µ(~x ,Cj) =
∑

m∈M
xm1

j
m where 1jm = 1 if m matches mj , 0 o/w.

ρ(·) is a revenue function mapping impressions to revenue.

Modeling the game. Example: One-Day Game (cont).

Revenue function

Figure 1: Example of revenue function for campaign with reach 1000.

Modeling the game. Example: One-Day Game (cont).

Game Dynamics

Stage 1: Agent j learns its own type Cj , but not others’ types.

Stage 2: All agents compute and submit their bids.

Stage 3: The n users arrive in a random order

〈 ~m〉 =
〈
m1,m2, . . . ,mn

〉
, where mi ∼ π

For each user i that arrives, a second-price auction is held.

The game ends and payoffs are realized.

Modeling the game. Example: One-Day Game (cont).

Strategies

Agent’s j strategy sj(Cj) maps a campaign Cj to a tuple
〈
~b,~l
〉

.

I ~b =
〈
b1, b2, · · · , b|M|

〉
is a bid vector, where bm ∈ R+ is the

bid of agent j for market segment m ∈ M.

I ~l =
〈
l1, l2, · · · , l|M|

〉
is a limit vector, where lm ∈ R+ is the

total spending limit of agent j in auctions matching market
segment m ∈ M.

Notation
Denote by s−j the strategies of agents other than j .

Modeling the game. Example: One-Day Game (cont).

The bundle ~x = ~x(sj , s−j , ~m) procured by agent j depends on:

I its strategy sj ,

I other agents’ strategies s−j ,

I and the realization of the users (types and ordering).

We can now state our goal!

Find s∗j that maximizes j ’s interim expected utility:

s∗j ∈ arg max
sj

 E
C−j

~m∼πn

[uj(~x(sj(Cj), s−j(C−j), ~m),Cj)]



Building an interim expected utility maximizing agent

Are we done? (Hint: nope, not even close...)

I Can we evaluate s−j(C−j)?

I Only if know all other agent’s strategies.

I We don’t! So we proceed by making assumptions...

I Make sure you clearly state any assumptions you make!

I You should also try to justify your assumptions, even when
their only justification is computational tractability.

Assumption!

We will be making assumptions about the behavior of other agents
in the game (as well as other assumptions)!

Supply assumption

Supply Assumption!

Assume that, for each market segment m ∈ M, there are exactly as
many users as expected according to distribution π, i.e., the num-
ber of users belonging to market segment m is nπm.

We reduce the number of random events to think about by
assuming a fixed, deterministic supply.

Demand assumption

Demand Assumption!

Assume (for the moment), we know other agents’ campaigns C−j .

In reality we know only the distribution of other agents’
campaigns. We work with the demand assumption in what follows
and later discuss ways to lift this assumption.

Game of complete information

Supply assumption + Demand assumption =

Game of complete information

Equilibrium Approach

High-Level Idea

I Compute an equilibrium and use it as your agent’s prediction
of the outcome of the game.

I Program your agent to play its part.

I Works well when an equilibrium is unique!

Equilibrium Assumption!

An equilibrium is a good prediction of the outcome of the game.
(Justification: Repeat play would lead to an equilibrium!)

Two Equilibrium Approaches

Market Equilibrium Approach

I Compute a competitive (or Walrasian) equilibrium of the
market induced by the game.

I Market equilibria do not always exist. May need to make
simplifying assumptions (e.g., linear Fisher markets).

Game-Theoretic Approach

I Predict a game-theoretic equilibrium, such as Bayes-Nash or
EPNE (if it exists)

I It is well-known that computing Nash equilibria is
computationally complex.

I Iterative approach (may not converge): predict the behavior
of the other agents in the game, and then compute your
agent’s move as a best-response to this prediction. Repeat.

Market Equilibrium Approach

High-Level Idea

Compute a competitive (or Walrasian) equilibrium of the market
induced by the game, and then program your agent to bid its part
of this equilibrium.

Definition: Walrasian equilibrium

An allocation and a pricing such that:

I All agents are utility-maximizing

I The market clears, a.k.a., supply meets demand.

Market Equilibrium Approach (cont.)

In combinatorial markets, we can compute a Walrasian Equilibrium
with the following ILP. Recall WE maximizes welfare!

maximize
∑
j

∑
S⊆U

vj(S)xjS

subject to
∑
S⊆U

xjS ≤ 1, ∀j

∑
j

∑
S⊆U:i∈S

xjS ≤ 1, ∀i ∈ U

xjS ∈ {0, 1}, ∀j ,∀S ⊆ U

Market Equilibrium Approach (cont.)

Prices are in the dual ILP!!

minimize
∑
j

uj+
∑
i

pi

subject to uj +
∑
i∈S

pi ≤ 1, ∀j , ∀S ⊆ U

uj , pi ≥ 0, ∀i , ∀j

Market Equilibrium Approach (cont.)

Great! But can we actually solve the ILP in a reasonable amount
of time? Note:

I The program requires a variable for every campaign and every
bundle.

I ILP quickly becomes intractable, we have thousands of users.

I Is the ILP in P? in NP?

WE computation for combinatorial markets

Answer to the last question: it depends on how we model
campaigns’ valuations. (Let’s say in P for now, ask me for details
if you want to know more).

Market Equilibrium Approach (cont.)

Question
How would you relax (i.e., what assumptions would you make) to
be able to solve for a WE in a reasonable amount of time?

Some remarks

I Note that WE computation is independent of agents’
strategies!

I Most useful in a setting where other-agent strategies are
difficult to predict.

I But what if we have reasonable predictions of other agents
strategies?

Game-Theoretic Approach

High-Level Idea

Compute a game-theoretic equilibrium, and then program your
agent to bid its part of this equilibrium.

Best-reply dynamics

I Predict the behavior of the other agents in the game

I Compute your agent’s best-response to this prediction

I Repeat

Game-Theoretic Approach

Deterministic bid assumption!

Suppose agent j , for every segment matching its campaign:

I bids ρj

(
Bj

Rj

)
, where ρj ∈ [0, 1] is a bid shading parameter

I has a spending limit equal to its campaign’s budget Bj

Compute best response

I Now we have s−j(C−j)!

I In particular, for a fixed C−j we can simulate the game

I Can we solve for the optimal bid given C−j?

Game-Theoretic Approach (cont.)

Let’s analyze a single market segment m with initial supply Nm.
Suppose there are |A| other agents.

Order bids: ρ1

(
B1
R1

)
≥ ρ2

(
B2
R2

)
≥ · · · ≥ ρa

(
B|A|
R|A|

)
The kth bidder gets xk impressions and pays pk .

xk = min

Bk

(
1

ρk+1

)(
Rk+1

Bk+1

)
︸ ︷︷ ︸

Affordable # Impr.

, Nm −
k−1∑
t=1

xt︸ ︷︷ ︸
remaining supply


︸ ︷︷ ︸

kth agent either spends its entire budget
or takes all the remaining supply

; pk = xkρk+1

(
Bk+1

Rk+1

)

Game-Theoretic Approach (cont.)

Algorithm 1 Simulate Auctions

1: procedure getAllocationAndPayment(k)
2: xi ← 0, pi ← 0 for all i ; curSupply ← Nm

3: Insert bid in kth position, b ∈
(
ρk

Bk
Rk
, ρk−1

Bk−1

Rk−1

)
4: for i = 1; i ≤ k; i + + do

5: xi ← min
(
Bi

1
ρi+1

Ri+1

Bi+1
, curSupply

)
6: pi ← xiρi+1

Bi+1

Ri+1

7: curSupply ← curSupply − xi

8: return (xk , pk)

Game-Theoretic Approach (cont.)

Choose optimal position k∗

k∗ ∈ arg max
k∈{1,2,...,|A|}

{u(xk , pk)} ,

where u(xk , pk) is your utility for xk impressions at price pk .

Finally, choose your bid: b ∈
(
ρk∗
(
Bk∗
Rk∗

)
, ρk∗−1

(
Bk∗−1

Rk∗−1

))

Define B0
R0

=∞.

Game-Theoretic Approach (cont.)

Some remarks

I How might the other agents best-respond to our agent’s
choice of k∗, and its corresponding bids?

I Is this process guaranteed to converge? Probably not, so what
should we do if/when it does not?

Some questions

I What is the computational complexity of finding a best
response as described, under the deterministic bid assumption?

I How might we generalize this approach to handle multiple
market segments? (It seems making an assumption about
other agents’ budgets, as well as bids, would help.)

I What about the many possible different orderings of the
users? How can we manage this uncertainty?

Some General Remarks

Multiple days

The discussion so far has been for the one-day game.
Can you think of ways to generalize for multiple days?

Incomplete information

Going back to our assumptions, can we lift some of them?

Dealing with uncertainty

Given an approach for a complete-information setting (e.g., market
or game-theoretic equilibria), how would you used it in the case of
incomplete information?

Simple approach

I Sample the uncertainty of the game n times.

I For each sample, compute a bid vector and limits.

I Aggregate (e.g., average) these bid vectors and limits.

I Report bids and limits based on the aggregate.

But maybe aggregating across samples is not a great idea?

If in 50% of the samples, the best move is to go left, and in the
other 50%, the best move is to go right, should a robot walk
straight ahead? What if just ahead lies a tree?

Dealing with uncertainty (cont.)

Given an approach for a complete-information setting (e.g., market
or game-theoretic equilibria), do scenario analysis.

Scenario evaluation

I Generate a set of candidate strategies S .

I Use the strategy s ∈ S that maximizes some estimate of
profit, averaged over a set of n samples (i.e., scenarios).

But how to generate candidate policies?

I Sample the uncertainty of the game m times.

I For each sample σ, compute a bid vector and limits.

I Add the strategy sσ induced by sample σ to the set S .

