# AdX Agent Design

#### Enrique Areyan Viqueira and Amy Greenwald

CS1951k Algorithmic Game Theory

April 2, 2020

# AdX Game

- A market with multiple copies of heterogeneous goods (users' impressions)
- Your agent's job: procure enough targeted impressions at the lowest possible cost

## Two Sources of uncertainty

- Impressions (Supply)
- Competition (Demand)

Variants of the AdX Game

- One-Day, One-Campaign
- Two-Days, Two-Campaigns

## Game Elements:

- ▶ Let *M* be a set of **market segments**, and  $\pi = \langle \pi_1, \pi_2, \dots, \pi_{|M|} \rangle$  a probability mass function where  $\pi_m$  is the probability of drawing  $m \in M$ .
- A user belongs to a random market segment m ∈ M (e.g., old, female) according to π.
- ► A campaign C<sub>j</sub> = ⟨R<sub>j</sub>, B<sub>j</sub>, m<sub>j</sub>⟩ demands R<sub>j</sub> ~ r(·) impressions, from a random market segment m<sub>j</sub> ∈ M such that m<sub>j</sub> ~ G(·), and has budget B<sub>j</sub> ~ b(·).
- An **agent**  $j \in A$  is characterized by its campaign  $C_j$ .

A One-Day Game, has N agents, each with a single campaign.

Let  $\vec{x} = \langle x_1, x_2, \dots, x_{|M|} \rangle$  be a bundle of impressions. The **utility**  $u_j$  of agent j, as a function of bundle  $\vec{x}$ , is given by:

$$u_j(\vec{x}, C_j) = \rho(\mu(\vec{x}, C_j)) - p(\vec{x})$$

 $p(\vec{x})$  is the total **cost** of bundle  $\vec{x}$ ,

$$\mu(\vec{x}, C_j) = \sum_{m \in \mathcal{M}} x_m \mathbb{1}^j_m$$
 where  $\mathbb{1}^j_m = 1$  if  $m$  matches  $m_j$ , 0 o/w.

 $\rho(\cdot)$  is a **revenue function** mapping impressions to revenue.

Revenue function

Figure 1: Example of revenue function for campaign with reach 1000.



### Game Dynamics

**Stage 1**: Agent *j* learns its own type  $C_j$ , but not others' types.

Stage 2: All agents compute and submit their bids.

**Stage 3**: The *n* users arrive in a random order

$$\langle ec{m} 
angle = \left\langle m^1, m^2, \dots, m^n 
ight
angle$$
 , where  $m^i \sim \pi$ 

For each user *i* that arrives, a second-price auction is held.

The game ends and payoffs are realized.

## Strategies

Agent's *j* strategy  $s_j(C_j)$  maps a campaign  $C_j$  to a tuple  $\langle \vec{b}, \vec{l} \rangle$ .

- ▶  $\vec{b} = \langle b_1, b_2, \cdots, b_{|M|} \rangle$  is a bid vector, where  $b_m \in \mathbb{R}_+$  is the bid of agent j for market segment  $m \in M$ .
- ▶  $\vec{l} = \langle l_1, l_2, \cdots, l_{|M|} \rangle$  is a limit vector, where  $l_m \in \mathbb{R}_+$  is the total spending limit of agent j in auctions matching market segment  $m \in M$ .

#### Notation

Denote by  $s_{-j}$  the strategies of agents other than j.

The bundle  $\vec{x} = \vec{x}(s_j, s_{-j}, \vec{m})$  procured by agent j depends on:

- its strategy s<sub>j</sub>,
- other agents' strategies  $s_{-j}$ ,
- and the realization of the users (types and ordering).

### We can now state our goal!

Find  $s_i^*$  that maximizes j's interim expected utility:

$$s_j^* \in \arg \max_{s_j} \left\{ \mathop{\mathbb{E}}_{\substack{C_{-j} \ \vec{m} \sim \pi^n}} [u_j(\vec{x}(s_j(C_j), s_{-j}(C_{-j}), \vec{m}), C_j)] \right\}$$