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Abstract

Game theory’s prescriptive power typically re-
lies on full rationality and/or self–play interac-
tions. In contrast, this work sets aside these fun-
damental premises and focuses instead on hetero-
geneous autonomous interactions between two or
more agents. Specifically, we introduce a new
and concise representation for repeated adversar-
ial (constant–sum) games that highlight the nec-
essary features that enable an automated plan-
ing agent to reason about how to score above
the game’s Nash equilibrium, when facing het-
erogeneous adversaries. To this end, we present
TeamUP, a model–based RL algorithm designed
for learning and planning such an abstraction.
In essence, it is somewhat similar to R-max with
a cleverly engineered reward shaping that treats
exploration as an adversarial optimization prob-
lem. In practice, it attempts to find an ally with
which to tacitly collude (in more than two–player
games) and then collaborates on a joint plan of
actions that can consistently score a high utility
in adversarial repeated games.

We use the inaugural Lemonade Stand Game
Tournament1 to demonstrate the effectiveness of
our approach, and find that TeamUP is the best
performing agent, demoting the Tournament’s
actual winning strategy into second place. In
our experimental analysis, we show hat our strat-
egy successfully and consistently builds collabo-
rations with many different heterogeneous (and
sometimes very sophisticated) adversaries.

1 Introduction

Adversarial games2 have been studied since the birth
of game theory. They abstract many real scenarios
such as chess, checkers, poker, and even the cold war.
Repeated interactions, on the other hand, model situa-
tions where two or more agents interact multiple times,
building long–run relationships. Their solutions are of-
ten represented as a sequence of actions (or plans of
actions). Repeated adversarial games are, therefore, a

1http://users.ecs.soton.ac.uk/acc/LSGT/home.html
2Adversarial games are also known as constant–sum

games.

natural framework to study sequential decision making
in an adversarial setting. It is somewhat surprising,
then, to find that artificial intelligence offers few in-
sights on how to interact against heterogeneous agents
in repeated adversarial games, particularly since the
field is renowned for offering solutions under weaker
assumptions than those imposed by game theory (e.g.
regarding computation and memory power). Indeed,
the problem is further exacerbated if the adversaries’
behaviour is unknown a priori to the planning agent
and the latter needs to interact with its adversaries to
learn how they behave.

Against this background, we present a study on how
an agent should plan a sequence of actions in a re-
peated adversarial game when the adversaries are un-

known. Specifically, in these games, the capability of
an agent to compute a good sequence of actions relies
on its capacity to forecast the behaviour of its oppo-
nents, which may be a hard task against opponents
that themselves adapt. The planner, therefore, needs
to construct a plan while considering the uncertain ef-
fects of its actions on the decisions of its opponents.

The repeated nature of the interaction allows us to
frame this as a planning adversarial problem, where
the unknown behaviour of the opponents is learnt by
repeatedly interacting with them. The learning task
however, requires a large number of repeated interac-
tions to be effective, which in many scenarios is un-
acceptable. To this end, we present a new and con-
cise game abstraction that reduces the state space to
a size that is tractable for an agent to learn with a
small number of samples. Building on this, we present
a reinforcement algorithm that learns on such a game
abstraction. It is grounded on reward–shaping and
model–based learning, techniques that have both been
shown to decrease exploration complexity when com-
pared with a straightforward implementation of Q–
learning.

By so doing, our work deviates substantially from
other work in multiagent learning against heteroge-



neous opponents. First, instead of assuming that our
planner is facing the worst opponent, as (Littman,
1994; Brafman & Tennenholtz, 2002) do, our objective
is to design a planner whose resulting strategy can do
better than its security (max–min) equilibrium strat-
egy. Second, on the other extreme, our objective is
not optimality against a known algorithm, as (Baner-
jee & Peng, 2005; Munoz de Cote & Jennings, 2010)
consider. In that work, the authors derive planning so-
lutions that are optimal only when facing some specific
class of opponents. Our analysis, instead, does not put
any type of constraints on the class of adversaries our
planning agent might face. As a consequence, because
an adversary may have any level of sophistication, in
our setting it is not possible to produce optimal solu-
tions.

The paper is organized as follows: in Section 2 we
give useful background and definitions. In Section 3
we define the planning problem more precisely and in-
troduce our novel state abstraction. Following this, in
Section 4 we propose an algorithm capable of learning
such a state abstraction. In Section 5 we introduce the
setting for our experiments, and in Section 6 we test
the performance of our algorithm. Finally, in Section 7
we conclude.

2 Background and Definitions

Throughout this work we consider n players that face
each other and repeatedly play a normal form game.

A normal form game (NFG) is a n–player
simultaneous–move game defined by the tuple Γ =
〈N , {Ai}, {ri}〉, where N is the set of n players, and
for each player i ∈ N , Ai is player i’s finite set of avail-
able actions, A = ×i∈NAi is the set of joint actions
and ri : A → R is the player i’s reward function. An
agent’s goal is to maximise its reward, and its best
response correspondence, BRi(a−i), is the set of
i’s best strategies, given the actions a−i ∈ ×j∈N\iAj

of the other players:

BRi(a−i) = {ai ∈ Ai : ai = argmax
a′

i
∈Ai

ri(a
′
i,a−i)}

In our context, stable points are characterised by the
set of pure Nash equilibria (NE), which are those
joint action profiles, a∗, in which no individual agent
has an incentive to change its action:

ri(a
∗
i ,a

∗
−i) − ri(ai,a

∗
−i) ≥ 0 ∀ ai, ∀ i ∈ N . (1)

That is, in a pure NE, a∗
i ∈ BRi(a

∗
−i) ∀ i ∈ N . In

many games, a player may find it beneficial to collab-
orate with some subset of the other players. Clearly,
this occurs in coordination games; moreover, it can
also arise in general–sum games (to choose from differ-
ent equilibria) and even more surprisingly, in constant–
sum games (we will explain how later in this section).
To make this notion of collaboration precise, we now

introduce a refinement to the best response correspon-
dence above. First, note that if the size of an agent’s
best response set |BRi(a−i)| > 1, then there may exist
an ai ∈ BRi(a−i) such that the payoff to an opponent
j is greater for this action than any other element of
i’s best response. Call such a set of actions i’s player

j–considered best response, BRi→j(a−i), given by:

rj(BRi→j(a−i), a−i) ≥ rj(a
′

i, a−i) ∀a
′

i ∈ BRi(a−i).

Given this, if, by i playing a j–considered best re-
sponse, j’s current action becomes an element of its
best response set, then we call this a reciprocal best
response. Specifically, if the following holds:

aj ∈ BRj(BRi→j(a−i),a−ij),

where −ij = N \{i, j}, then we call BRi→j(a−i) an i–
to–j reciprocal best response, written BRi↔j(a−ij).
Furthermore, this refinement can be generalised to
consider sets of players, χ ∈ N \ i, instead of single
players j. Although such reciprocal best responses are
not guaranteed to exist for every player and for each
action profile in a game, such an action does exist at
a Nash equilibrium of a game (by definition). Given
this, the reciprocal best response concept will be used
as a basic building block of the TeamUP algorithm.

In our setting, the agents play a repeated game, in
which a NFG is repeatedly played. In this context,
the NFG is called a stage game. At each time step,
the agents simultaneously choose an action, giving a
profile a ∈ A, which is announced to all players, and
each player i receives their reward ri(a) in the NFG.
This stage game is repeated at each time step.

Repeated NFGs can have a finite or infinite horizon,
depending on the number of stage games played. A
player’s objective in a repeated game is to maximize
the sum of rewards received. Imagine that at time t,
players have seen the history of play (a1, . . . ,at) ∈
(A)t. In this context, a behavioural policy is a
function πi : (A)t → Ai that maps histories to ac-
tions. However, computing an optimal policy at any
time t is an adversarial optimization problem of the
objective function π∗

i = arg maxπi

∑T
k=t ri(πi,a

k
−i). It

is called adversarial because the term ak
−i (i.e. the ad-

versaries’ optimized strategy) is coupled with the term
to be maximized, πi

3. The capability of a player to
compute an optimal strategy therefore relies on its ca-
pacity to forecast its counterpart’s behaviour, which
may be a hard task against opponents that adapt.

3 Planning in Adversarial Repeated

Games

Computing a strategy of play in repeated NFGs is an
adversarial optimization problem, as explained earlier.
And the planner’s optimization capabilities rely on

3A change in πi might cause a change in a
k
−i.



how well it can predict the behaviour of its adversaries.
Against adaptive opponents, however, predicting their
behaviour means learning a mapping from histories to
the opponent’s response strategies. Nevertheless, ad-
versarial games involving two or more players are en-
dowed with some underlying structure that can help
reasoning using a higher–level representation. Specif-
ically, it is possible to balance the (constant) sum in
the planner’s favour by colluding with other player(s)
in order to minimize the utility of the excluded ad-
versaries. However, such collaboration is difficult to
achieve without explicit communication, correlation or
pre–game agreements, which we do not consider.

We focus instead on tacit collusion, in which teams of
collaborating agents are formed through repeated play.
To implement this collusion, we adopt the approach
of modelling the high–level decision–making behaviour

model of our opponents, rather than focusing on their
specific actions. As we show later, this abstraction
allows us to accurately forecast the opponent reactions
to our current actions, while at the same time it is
simple enough for state transitions to be learnt in a
very small number of iterations. Together, these two
properties allow our planner to collaborate effectively,
when such an opportunity exists.

3.1 State Abstraction

Our objective is to collaborate with other players by
making them an offer they can’t refuse, i.e. an action
profile that consistently gives them a score above the
game’s Nash equilibrium. We do this by measuring
the deviation of the planner’s opponents from ideal

types, which the planner can easily predict and collab-
orate with. In this work, we use the ideas on lead-
ing Q–learning algorithms (Littman & Stone, 2002) to
generate our ideal types. We now formally describe
these ideal types and then show how we generalise
these by measuring opponents’ deviations from ideal
types, which creates instances of features. Finally, we
will describe how the state space is constructed using
a tuple of these features. It is this abstraction that
will help us build an automatic planner in the spirit of
Littman and Stone’s work.

Ideal types
There are two obvious ways of initiating collabora-
tions. First, a player could lead simply by sticking
to its current strategy, and wait to see if any oppo-
nents follow. Second, a player could follow by chang-
ing strategy to one that is inside the BR set. Based on
these two patterns of play, we define two ideal types of
strategies that an agent could easily collaborate with,
as follows:

• A perfect Lead strategy picks a starting strategy
and does not move from it for the duration of the
game.

• A perfect Follow strategy always selects actions

that are a BR to the previous action selected by
the opponent that is being followed.

Features
The planner classifies the opponents by their proxim-
ity to playing either a lead or follow strategy, based
on their previous actions. An opponent classified as
playing a lead strategy is usually slow moving, or sta-
tionary, and is hence very predictable. An opponent
classified as playing a follow strategy tends to play
actions that are within the best response set from the
previous time step (or an appropriately discounted av-
erage of recent time steps). Given this, we now discuss
these ideal types and how we measure an opponent’s
deviation from them, which form the basis for our state
abstraction.

In order to classify its opponents, the planner main-
tains a measure of a lead index, li, and a follow in-
dex, fij , (where j ∈ N \ i), to measure whether
player i is following player j. The indices are calcu-
lated from the sequence of past actions of each player
Ai = (a1

i , . . . , a
t−1
i ):

li = −

t−1
X

k=2

γt−1−k

Γ
∆

“

a
k
i , a

k−1
i

”ρ

, (2)

fij = −

t−1
X

k=2

γt−1−k

Γ
∆

“

a
k
i , BRi(a

k−1
j )

”ρ

, (3)

where Γ =
∑t−1

k=2 γt−1−k. The function

∆(ak
i , BRi(a

k−1
j )) is a metric that captures the

distance between the actions of player i at time–step
k and the BRi(aj) at k − 1. These indices therefore
quantify the closeness of each opponent to an ideal
type by looking at the lag–one distance between
respective action sequences. The parameter ρ scales
the distances between actions: ρ < 1 treats all
behaviour that deviates from the ideal types relatively
equally, while ρ > 1 places more value on behaviour
that is close to ideal type behaviour. As such, with a
ρ > 1, our planner can accommodate players that are
noisy but select actions close to that of an ideal type.
Notice that the indices are always negative — the
greater the value of the index, the more this player
follows the ideal type. An index value of 0, indicates
an exact ideal type. The parameter γ ∈ (0, 1] is the
response rate (or discount factor), which exponentially
weights past observations. Note that these metrics
generalize the idea of “distance”, for example, in
games where actions are physical locations (as is the
running example from Section 5), ∆(·) can represent
the Euclidean distance (if using the Euclidean norm)
and in less structured games, for example where any
two different actions are treated the same, ∆(·) is a
boolean 0 if the arguments are equal and 1 otherwise.

Now we describe how we use these metrics to generate
features on a high–level state space so that a learning
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Figure 1: The decision flow of a state feature.

algorithm, whose objective is to find allies to collab-
orate with, can plan a sequence of high–level actions
that can result in a higher than the NE expected utility
in adversarial repeated games.

4 The TeamUP Algorithm

TeamUP is a model–based RL algorithm designed for
learning and planning against unknown adversaries.
In essence, it is reminiscent to R-max (Brafman &
Tennenholtz, 2002) (in that it uses a model–based RL
paradigm and implicit exploration) however it also in-
corporate a cleverly engineered reward shaping scheme
that treats exploration as an adversarial optimization
problem. In practice, TeamUP attempts to find al-
lies with which to tacitly collaborate on a joint plan
of actions that can consistently score a high utility in
adversarial repeated games. Note that although we
motivated this study on adversarial games, the ba-
sic properties of our algorithmic approach are general
enough to be useful in the broader class of repeated
general–sum games.

In more detail, using the metrics presented in the sec-
tion, TeamUP creates feature instances, oi, that take
values from the set Oi = {L,F0, Fj , O} (in the next
subsection we explain what they mean in detail), and
the flow chart in Figure 1 shows the decision process
used to generate each instance. The input parameter
B is a threshold calculated as

B = fminδ (4)

where fmin = minx,y∈Ai
−

∑t−1
k=2

γt−1−k

Γ ∆(x, y)ρ is a
lower bound on the indices — note that fmin is an in-
trinsic parameter of the problem and indices fij , li all
take values in the range [fmin, 0]. B is solely “tweak-
able” by 0 ≤ δ ≤ 1 and in essence, this threshold mod-
ifies how tolerant to deviations from optimal types the
planner is, with δ = 0 being completely intolerant to
deviations from optimal types.

4.1 States and Transitions

At a glance, the state representation of TeamUP is
based on high–level observations that classify each op-
ponent (and itself) as being either stationary (L), chas-
ing another player (Fx), or unknown (O)4. Using this
abstraction, the algorithm learns state transitions and
expected rewards.

4Note that we always use the index 0 for self referencing
the planner.

The planner’s state is composed by a tuple of the form
s = (o0, {oi}i∈N\0) ∈ S = ×i∈NOi (which captures
the high–level behaviour of all players in the game)
and its action space is defined by the set {L,Fi, Fj}.
From Eqs. (2,3), note how the discount factor γ is
what succinctly modifies how “high–level”strategies
are treated. When γ → 0, only immediate past ac-
tions are considered, and when γ → 1 long sequences
of past actions come into play. Also note that by struc-
turing the game using this state abstraction, the plan-
ner is actually learning how to play a stochastic game,
where state transitions are controlled by high–level
strategies. TeamUP learns state–action transitions
by counting experience triplets of the form (s, a, s′)
(i.e. state, action and next state) and updating the
transition function T (s, a, s′) when required5. Note
that these transitions are (probably) non–stationary
because the process is only partially controlled by
TeamUP — the resulting next state also depends on
the opponents’ joint action. This contrasts with R-
max ; It learns the transition function T (s,a, s′),
which are stationary transitions. Nevertheless, we aim
to learn the (possibly non–stationary) transition func-
tion, because accurate transition predictions allow the
planner to predict its opponents’ responses and plan
the best policy accordingly.

4.2 Social Reward Shaping Exploration

Explorative actions in a multiagent context deserve
a different treatment to that of a single agent learn-
ing problem. This is because an agent’s (typically
random) exploratory actions, although unintentional,
could be interpreted by its adversaries as deliberate
strategic actions, so can contribute to the way its op-
ponents react. This means that exploration in a MAL
context is not only a heuristic that allows an agent to
learn about its environment, but that it should also
be cleverly designed to correctly signal its adversaries.
Furthermore, explorative actions might be costly. This
fact is exacerbated in finite horizon games where a
player’s chance to score high is lost forever.

Social reward shaping (Babes et al., 2008) are external
rewards presented to a RL algorithm as an addition to
the actual stage game rewards. Their purpose is to
encourage desirable behavior during the learning pro-
cess. In more detail, they are designed to try to “lock”
non–stationary processes by acting as a leader in the
early learning phase. They do so by reasoning about
the changes in the players’ strategies as a non–linear
dynamic system, with probably many absorbing points
(equilibria), and each with its basin of attraction. The
resulting exploration heuristic that social shaping will
induce (especially in the early learning phase) directly

5Note that the first element of the state tuple is the
planner’s last high–level action, which does not need to be
measured.



‘shapes’ those basins of attraction, and therefore the
probabilities that the system will converge to different
equilibrium points. 6 Social shaping extends the well
known potential–based shaping framework (Ng et al.,
1999) to a multiagent context. Here, the system de-
signer provides a real–valued function Φ : S → R and
the potential function used to modify the reward for a
transition from state s to s′ is F (s, s′) = γ′Φ(s′)−Φ(s),
with the discount factor γ′.

When trying to extend potential based shaping to
stochastic games (a generalization of Markov decision
processes (MDPs) (Puterman, 1994) that allows mul-
tiple agents), the potential of a state (i.e. the state
value) depends on the joint policy of all players, i.e.,

V π(s) = r(π(s)) + γ′
∑

s′∈S

T (s, π(s), s′)V π(s′). (5)

Therefore, a high potential state for a certain joint
policy π might be a low potential state for some other
joint policy π′ and there is no hope in defining an op-
timal joint policy for adversarial games. If this work
was concerned with self–play analysis, or interested
in strategies when facing fully rational opponents, a
worst case solution for adversarial games would suf-
fice (i.e. its max–min policy) and the state potentials
would be well defined. However, we are interested in
close to optimal policies against unknown adversaries,
so state potentials need not be max–min based. In-
stead, what we define are potentials based on ideal

states, that are played against ideal types of oppo-
nents.

To this end, we consider states, where at least one
opponent is a perfect follower and is following the
planner, as optimal states. For example, for a
three player game, the set of optimal states is S̄ =
{(L,F1, ∗), (L, ∗, F1), (F2, F1, ∗), (F3, ∗, F1)}, where
∗ ∈ O is a wild–card feature. In the same way,
the opposite applies to situations where the planner
is left out from being followed as worst states, i.e.
s ∈ S = {(∗, F3, L), (∗, L, F2), (∗, F3, F2)}. Note
how the optimal and worse states all express situations
where tacit collusion between players exists. In adver-
sarial games, the player(s) that are left out of the coali-
tion will be the “sucker” players, achieving lower than
max–min utilities. We’ll build our planner around this
fact, and therefore, its purpose will be twofold: make
an offer the adversary cannot resist (find an ally), and
exploit as effectively as possible the deficiencies of the
sucker (left out) players in the planner’s favour. Most
importantly, note that states where collaborations ex-
ist (all states in the set {S̄, S}) are likely to be stable
configurations, i.e. it is unlikely that there exists any

6A different approach for equilibrium selection is that of
(Wicks & Greenwald, 2005), however that finds a unique
stable equilibrium via perturbations, but not necessarily
the one wanted.

profitable unilateral deviation7. For those states that
we know have stable configurations, we can accurately
define their state value. We build on this fact to work
out our potential–based function. More specifically,

Φ(s̄) = V (s̄) =
Rmax

1 − γ′

Φ(s) = V (s) =
Rmin

1 − γ′

Φ(s̃) = V (s̃) =
Rmax − ǫ

1 − γ′

where Rmax and Rmin are the largest and smallest re-
wards respectively; s̃ ∈ S \ {S̄, S} are all other states
and are ǫ lower than optimal, where ǫ can be chosen
arbitrarily small to be optimistic in the face of uncer-
tainty.

4.3 The Algorithm

TeamUP takes parameters γ, ρ, ǫ, δ and K, and learns
a model M of the environment by experiencing tuples
〈s, a, s′, r〉 and then computes an optimal policy with
respect to this current model. Its execution can be
divided in two phases:

Initialisation: Start with an initial estimate for the
model parameters where all state–action pairs
yield a reward based on assumptions from its spe-
cific shaping function (Section 4.2) and all states
lead with probability 1 to the fictitious state s0.
Based on this current model, a call to VI(M)8

computes a new optimal discounted policy based
on its current model M .

For each stage game: (a) observe: at state s, a
new joint action a = (a, a1, . . . , an) is observed
and the new features are computed using the de-
cision flow (Figure 1), which constructs the next
state s′. (b) update:

• c(s, a, s′) ← c(s, a, s′) + 1,

• u(s, a) ← u(s, a) + r(a)

• R(s, a) ← u(s,a)
P

s′
c(s,a,s′) ,

• if
∑

s′ c(s, a, s′) = K, run VI(M) and follow
the new optimal discounted policy.

As can be seen, TeamUP is similar to R-max but dif-
fers in critical ways. A crucial difference is in the
way TeamUP updates its model. It keeps counts of
experienced tuples 〈s, a, s′〉, therefore, each time it
runs VI, it recomputes the complete transition func-
tion T (s, a, s′),∀s, s′ ∈ S,∀a ∈ Ai, as opposed to R-
max that only modifies the transition for the newly

7Under the assumption that left out players do not col-
lude, the best these players can achieve is to optimize
against their worst opponent (i.e. the planner and its ally).
Any deviation from that max–min strategy results in a fur-
ther advantage to the colluders.

8Where VI(M) is a call to the standard value iteration
algorithm (Puterman, 1994) on the current model M .



labeled ‘known’ tuple but not the rest. This is a cru-
cial difference if opponents are non–stationary because
state transitions depend on the adversaries’ current
strategies. The second difference is in the initialisa-
tion, where TeamUP uses social shaping to conduct its
relaxation search, instead of using a fully optimistic re-
laxation search. As pointed before, a theoretical anal-
ysis of our algorithmic approach will not say much
without fixing the type of opponents. We chose the
Lemonade Stand Game Tournament (see next section)
for driving our experimental analysis to test our ini-
tial premise — i.e. to design a planner that achieves
high utilities against unknown adversaries. This tour-
nament provided us the fairest neutral ground for com-
parison, beside providing us with very interesting and
sometimes quite sophisticated adversary algorithms.

5 The Lemonade Stand Game

The Lemonade Stand game (LSG)9 is played on an
island, where, each day, three players choose a location
for their lemonade stand, with the aim of being as far
from their opponents as possible10. The game is played
for 100 days — on each day the players choose their
locations simultaneously and with no communication.

In the stage game, players choose from twelve possible
locations, Ai = {1, . . . , 12}. The total payoff sums to
24 and is to be distributed among the players given
by the distance to the nearest player clockwise plus
the distance to the nearest player anti–clockwise (i.e.
customers are assumed to be uniformly distributed
around the island). If two players are located in the
same position, both receive 6 and the third receives 12.
If all three are located in the same position, they all
receive 8. Each player’s objective is to maximise their
aggregate utility over 100 rounds. As such, a player
wishes to be located as far as possible from its two
opponents in each stage game.

The stage game of the LSG has many pure NE: Fig-
ure 2 shows the NE locations for a third player, given
players square and star are located as shown. For each
configuration, the third player’s best responses are
anywhere in the larger segment between the star and
square players, while the best responses that are con-
sistent with a NE are those that are on or in–between
the positions directly opposite the two players, as in-
dicated by the arrows. This is clear in 2(a). In 2(b),
where the opponents play opposite one another, the
third player is indifferent between all positions, while
in 2(c), where its opponents play on top of one another,

9The game was invented by Martin Zinkevich. It was
designed to specifically test what should a good strategy
be in repeated interactions between heterogeneous players,
given that game theory’s prescriptive power can only do so
much in this domain.

10We refer the reader to (Sykulski et al., 2010) for a
throughout description and analysis of the game.

(a) (b) (c)

Figure 2: Best-responses for different opponent configura-
tions: The dot–dashed segment indicates the third player’s
best–response actions, the dashed segment shows best–
response actions consistent with a Nash equilibrium, and
arrows point to the action opposite each opponent.

the third player is indifferent between all positions ex-
cept the location of its opponents. In particular, given
the analysis above, it is unlikely that standard game
theoretic analysis will suffice in building a good strat-
egy. This motivates our introduction of j–considered
and reciprocal best responses in Section 2. In partic-
ular, in any adversarial game played between three or
more players, a coordinated team of players, χ ⊂ N

can exploit the remainder χ′. This means that in the
LSG, two players can collaborate on a sequence of ac-
tions that maximize their utilities, at the expense of
the third.

Specifically, collaboration between two players can
be achieved using reciprocal best responses, and this
forms the basis of TeamUP. In the LSG, a reciprocal
best response is played by i if it chooses to follow an
opponent and play directly opposite it (these points
are indicated by the arrows in Figure 2). In this situ-
ation, the utility of the third player is restricted to 6,
which it receives in all of the 12 possible positions —
hence all locations are NE, as shown in Figure 2(b).
Thus, the two collaborating players share the remain-
ing utility of 18. Similarly, player i might choose to
lead its opponents by sticking in one position and wait
for another player to play a reciprocal best response
to this action, with the same payoffs resulting. Note
that a third strategy that selects locations randomly
can easily be defeated this way — with the two col-
laborating players receiving an expected utility of 9
and the random strategy only 6. A pair of strategies
that consistently play such reciprocal best responses
can therefore frequently receive high payoffs.

6 Results

In this section we analyse and compare TeamUP to the
other entries of the inaugural LSG Tournament, in or-
der to demonstrate the performance of the planner’s
resulting strategy against other entrants of the original
tournament. Testing TeamUP in this domain means
our planner will face a pair of heterogeneous and un-
known strategies in a more than two action adversarial
game. The successful strategies will therefore be those
that can consistently balance the constant sum in their
favour.



6.1 The LSG Tournament

First, we re–ran the Tournament but included
TeamUP (see Table 1). Note that we do not include
results for Brown, which was placed 7th in the original
tournament11. We repeat the structure of the original
tournament, which is a round–robin format with each
triplet combination of agents simulated for several re-
peats. The original Tournament concluded with EA2

shown to be the winner and Pujara and RL3 awarded
a statistical tie for second place. In the revised ver-
sion, however, TeamUP is the overall winner, demot-
ing EA2 into second place. The parameter values that
we used for TeamUP in all reported experiments are:
γ = 0.05, δ = 0.3, ρ = 0.5,K = 15 and these were cho-
sen considering the game length. Also, note that for
the LSG, Rmax = 12 (for optimal states) and Rmin = 6
(for worst states). We set ǫ = 4 such that all other
states have a potential of 8, which is a player’s equal
share of the total utility.

Table 1: LSG Tournament including TeamUP
Rank Strategy Avg. Utility S.E.

1. TeamUP 8.5838 ± 0.0098

2. EA2 (Southampton/Imperial) 8.4635 ± 0.0090
3. RL3 (Rutgers) 8.4267 ± 0.0055
4. Pujara (Yahoo! Research) 8.4065 ± 0.0082
5. Waugh (Carnegie Mellon) 8.1455 ± 0.0106
6. ACT–R (Carnegie Mellon) 7.9356 ± 0.0122
7. Schapire (Princeton) 7.5979 ± 0.0120
8. FrozenPontiac (Michigan) 7.5382 ± 0.0111
9. Kuhlmann (UT Austin) 6.9635 ± 0.0076

There were several interesting strategies of note. The
strategies placed 4th–9th, in our revised standings, all
select actions similarly to an ideal type (lead or fol-
low), and can therefore be simultaneously used as a
collaborative partner (except for the random strategy
used by Kuhlmann), or exploited as the sucker player.
EA2 and RL3, however, look to adapt their behaviour
in order to guarantee forming a collaboration with a
particular opponent. These two strategies share some
underlying principles with TeamUP — in particular
that actions should be selected according to the gen-
eral behavioural characteristics of the opponents. It
is of no surprise, therefore, that these strategies per-
formed best in this Tournament. The key difference,
and contribution of TeamUP, is that it learns reactions
of the opponents to the planner’s actions by using se-
quential planning to select collaborations that are pre-
dicted to yield the highest long–term utility dependent
on the types of opponent faced. In contrast, EA2 for
example, is indifferent between types of collaboration
and selects the statistically most likely partnership to
succeed myopically, based on the recent behaviour of
the opponents, without planning over the rest of the
game. RL3 however, selects between potential collab-
orations based on their historical success, but simi-
larly to EA2, it does not do this by considering the fu-

11We apologise to the Brown team for this — their strat-
egy is extremely complex and requires several weeks of
computation to analyse, for which we had insufficient time.
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Figure 4: The classification of each player’s state for an
example game of 100 stages.

ture behaviour of both opponents — a feature which
is inherent in the sequential planning performed by
TeamUP.

To gain yet more insight, we show some case examples
which outline key reasons for TeamUP yielding the
highest utility of all strategies. Specifically, in Figure
3 we show a breakdown of the most frequent visited
states, aggregated over several repeats of the game,
for various combinations of opponents. We classify
together all stage game states that belong to the op-
timal state (s̄), worst state (s) or in all other state
(s̃) sets. We also include the average utility received
by each algorithm. From the figure, notice that 85–
95% of the stage games reached belong to the optimal
set. Although not noticeable in Figure 3, TeamUP’s
collaborative partners are EA2 and RL3, which consis-
tently follow TeamUP — this reinforces the claim that
our strategy is consistent in finding an opponent to
collaborate with and exploit the third player. Specif-
ically, not only does TeamUP succeed in collaborat-
ing against different types of opponents, but the third
player appears to be selecting actions near the oppo-
nent and far from our location, such that our utility is
the highest of all three players.

To explain these results in more detail, in Figure 4
we show an example game run over its 100 stages and
plot the high–level strategies played by the triplet at
each stage. We choose ACT–R as this strategy cy-
cles between strategies that include following one of
the opponents, switching only if the utility received is
below some acceptable level. In this game, TeamUP
and EA2 have successfully collaborated (as indicated
by the average utilities), ACT–R therefore switches
between states at every iteration, as its utility is con-
sistently low. Crucially, TeamUP is identifying this
change in behaviour from ACT–R. This fact follows
from the fast learning time of TeamUP (due to our
shaping rewards and efficient use of experience by the
model–based RL) and that the response rate, γ, is set
suitably low. Notice that occasionally TeamUP then
chooses to follow ACT–R (TeamUP’s feature F3), in
an attempt by TeamUP to have both opponents play
on the opposite side of the island (as EA2 is already
following TeamUP).

When taken together, the results in this section
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Figure 3: The frequency of visits to optimal states, s̄, worst states, s, and all other states, s̃, against various combinations
of opponents, where we include the average utility to each player.

demonstrate the ability of TeamUP to not only form
collaborations with various heterogeneous opponents,
but to also often receive the higher proportion of the
joint utility shared with the collaborative partner.

7 Conclusions and Future Work

This paper presents a novel way of thinking about mul-
tiagent heterogeneous interactions. Specifically, our
analysis and results are sustained under the mathe-
matical framework of repeated adversarial games. We
propose a new way of analysing any repeated game
played between the planner and one or more adver-
saries by abstracting important features about the in-
teraction between players themselves. Specifically, this
paper proposes that such features be defined in terms
of “leaders” and “followers” and classifying the be-
haviour of our opponents under these terms. We in-
troduced TeamUP to show how an automatic planning
agent, by reasoning in a strategy space (as opposed to
an action space), can generate policies that can score
high utilities in adversarial games. Note that lead and
follow strategies can be used in any repeated inter-
action game (not just adversarial) and hence our ab-
straction (and therefore TeamUP) should be general
enough to work in these settings. However, our study
is based on an adversarial setting given that this is the
most challenging (due to the opposing players’ goals).

Our experimental setting analysed and compared
TeamUP to other entries in the inaugural LSG Tour-
nament. Our findings, beside presenting TeamUP as
the overall winner, revealed (surprisingly) clever poli-
cies that we did not have in mind. TeamUP showed
not only that it is successful in building tacit collu-
sion policies with an ally, but that at the same time,
it encourages the sucker player to play close to a plan-

ner–considered BR (in the LSG this means to stay far
way) — it is this extra component that significantly
increased TeamUP’s utility.

The study we present takes an important step for-
ward in building good learning algorithms designed
specifically to play against other unknown autonomous
agents. Our proposed algorithm uses such an abstrac-
tion and, besides outperforming every other strategy
experimentally, is (to our knowledge) the first auto-
matic planner designed for any type of adversary. In
the near future, we plan to work on the theoreti-

cal bound when facing different classes of adversaries.
Also, it would be interesting investigating if our ab-
straction could be generalized with the idea of cluster-
based representations found in (Ficici et al., 2008).
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