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Abstract

We study the close connections between game the-
ory, on-line prediction and boosting. After a brief
review of game theory, we describe an algorithm
for learning to play repeated games based on the
on-line prediction methods of Littlestone and War-
muth. The analysis of this algorithm yields a sim-
ple proof of von Neumann’s famous minmax theo-
rem, as well as a provable method of approximately
solving a game. We then show that the on-line pre-
diction model is obtained by applying this game-
playing algorithm to an appropriate choice of game
and that boosting is obtained by applying the same
algorithm to the “dual” of this game.

1 INTRODUCTION

The purpose of this paper is to bring out the close connec-
tions between game theory, on-line prediction and boosting.
Briefly, game theory is the study of games and other interac-
tions of various sorts. On-line prediction is a learning model
in which an agent predicts the classification of a sequence of
items and attempts to minimize the total number of prediction
errors. Finally, boosting is a method of converting a “weak”
learning algorithm which performs only slightly better than
random guessing into one that performs extremely well.

All three of these topics will be explained in more detail
below. All have been studied extensively in the past. In this
paper, the close relationship between these three seemingly
unrelated topics will be brought out.

Here is an outline of the paper. We will begin with a
review of game theory. Then we will describe an algorithm
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for learning to play repeated games based on the on-line
prediction methods of Littlestone and Warmuth [15]. The
analysis of this algorithmyields a new (as far as we know) and
simple proof of von Neumann’s famous minmax theorem, as
well as a provable method of approximately solving a game.

In the last part of the paper we show that the on-line
prediction model is obtained by applying the game-playing
algorithm to an appropriate choice of game and that boosting
is obtained by applying the same algorithm to the “dual” of
this game.

2 GAME THEORY
We begin with a review of basic game theory. Further back-
ground can be found in any introductory text on game theory;
see for instance Fudenberg and Tirole [11]. We study two-
person games in normal form. That is, each game is defined
by a matrix � . There are two players called the row player
and column player. To play the game, the row player chooses
a row � , and, simultaneously, the column player chooses a
column � . The selected entry 	�
���
���� is the loss suffered by
the row player.

For instance, the loss matrix for the children’s game
“Rock, Paper, Scissors” is given by:

R P S

R 1
2 1 0

P 0 1
2 1

S 1 0 1
2

The row player’s goal is to minimize its loss. Often, the
goal of the column player is to maximize this loss, in which
case the game is said to be “zero-sum.” Most of our results
are given in the context of a zero-sum game. However, our
results also apply when no assumptions are made about the
goal or strategy of the column player. We return to this point
below.

For the sake of simplicity, we assume that all the losses
are in the range � 0 
 1 � . Simple scaling can be used to get
more general results. Also, we restrict ourselves to the case
where the number of choices available to each player is finite.
However, most of the results translate with very mild addi-
tional assumptions to cases in which the number of choices
is infinite. For a discussion of infinite matrix games see, for
instance, Chapter 2 in Ferguson [3].



2.1 RANDOMIZED PLAY

As described above, the players choose a single row or col-
umn. Usually, this choice of play is allowed to be random-
ized. That is, the row player chooses a distribution

�
over the

rows of � , and (simultaneously) the column player chooses
a distribution � over columns. The row player’s expected
loss is easily computed as���

� �
� 
�� � ��
 � 
�� ��� 
 � �	� � T �
���

For ease of notation, we will often denote this quantity by
��
 � 

��� , and refer to it simply as the loss (rather than
expected loss). In addition, if the row player chooses a dis-
tribution

�
but the column player chooses a single column � ,

then the (expected) loss is �
� � 
 � ����
���
�� � which we denote

by ��
 � 
���� . The notation ��
 � 

��� is defined analogously.
Individual (deterministically chosen) rows � and columns

� are called pure strategies. Randomized plays defined by
distributions

�
and � over rows and columns are called

mixed strategies. The number of rows of the matrix � will
be denoted by � .

2.2 SEQUENTIAL PLAY

Up until now, we have assumed that the players choose their
(pure or mixed) strategies simultaneously. Suppose now that
instead play is sequential. That is, suppose that the column
player chooses its strategy � after the row player has chosen
and announced its strategy

�
. Assume further that the column

player’s goal is to maximize the row player’s loss (i.e., that
the game is zero-sum). Then given

�
, such a “worst-case”

or “adversarial” column player will choose � to maximize
��
 � 

��� ; that is, if the row player plays mixed strategy

�
,

then its payoff will be

max
Q

M 
 P 
 Q ��� 
 1 �
(It is understood here and throughout the paper that maxQ
denotes maximum over all probability distributions over col-
umns; similarly, minP will always denote minimum over
all probability distributions over rows. These extrema exist
because the set of distributionsover a finite space is compact.)

Knowing this, the row player should choose
�

to mini-
mize Eq. (1), so the row player’s loss will be

min
P

max
Q

M 
 P 
 Q �
�
A mixed strategy

���
realizing this minimum is called a min-

max strategy.
Suppose now that the column player plays first and the

row player can choose its play with the benefit of knowing
the column player’s chosen strategy � . Then by a symmetric
argument, the loss of the row player will be

max
Q

min
P

M 
 P 
 Q � 

and a � � realizing the maximum is called a maxmin strategy.

2.3 THE MINMAX THEOREM

Intuitively, we expect the player who chooses its strategy last
to have the advantage since it plays knowing its opponent’s
strategy exactly. Thus, we expect

max
Q

min
P

M 
 P 
 Q ��� min
P

max
Q

M 
 P 
 Q �
� 
 2 �

We might go on naively to conjecture that the advantage of
playing last is strict for some games so that, at least in some
cases, the inequality in Eq. (2) is strict.

Surprisingly, it turns out not to matter which player plays
first. Von Neumann’s well-known minmax theorem states
that the outcome is the same in either case so that

max
Q

min
P

M 
 P 
 Q ��� min
P

max
Q

M 
 P 
 Q � 
 3 �

for every matrix � . The common value � of the two sides
of the equality is called the value of the game � . A proof of
the minmax theorem will be given in Section 2.5.

In words, Eq. (3) means that the row player has a (min-
max) strategy

���
such that regardless of the strategy � played

by the column player, the loss suffered ��
 ��� 
�� � will be at
most � . Symmetrically, it means that the column player has
a (maxmin) strategy � � such that, regardless of the strategy�

played by the row player the loss will be at least � . This
means that the strategies � � and

���
are optimal in a strong

sense.
Thus, classical game theory says that given a (zero-sum)

game � , one should play using a minmax strategy. Such a
strategy can be computed using linear programming.

However, there are a number of problems with this ap-
proach. For instance,� � may be unknown;� � may be so large that computing a minmax strategy

using linear programming is infeasible;� the column player may not be truly adversarial and may
behave in a manner that admits loss significantly smaller
than the game value � .

Overcoming these difficulties in the one-shot game is
hopeless. But suppose instead that we are playing the game
repeatedly. Then it is natural to ask if one can learn to play
well against the particular opponent that is being faced.

2.4 REPEATED PLAY

Such a model of repeated play can be formalized as described
below. To emphasize the roles of the two players, we refer
to the row player as the learner and the column player as the
environment.

Let � be a matrix, possibly unknown to the learner. The
game is played repeatedly in a sequence of rounds. On round� � 1 
�������
�� :

1. the learner chooses mixed strategy
���

;

2. the environment chooses mixed strategy � � (which may
be chosen with knowledge of

���
)

3. the learner is permitted to observe the loss ��
 � 

� � � for
each row � ; this is the loss it would have suffered had it
played using pure strategy � ;

4. the learner suffers loss ��
 � � 
�� � � .
The goal of the learner is to do almost as well as the best
strategy against the actual sequence of plays � 1 
������ 
��� 

2



which were chosen by the environment. That is, the learner’s
goal is to suffer cumulative loss � � � 1

��
 � � 

� � �
which is “not much worse” than the loss of the best strategy
in hindsight

min
P

 � � � 1

M 
 P 
 Q � �
�
An algorithm for solving this problem can be derived by a

direct generalization of Littlestone and Warmuth’s “weighted
majority algorithm” [15], and is essentially equivalent to our
earlier “Hedge” algorithm [9]. The algorithm, called LW,
is quite simple. The learner maintains nonnegative weights
on the rows of � ; let � � 
�� � denote the weight at time

�
on

row � . Initially, all the weights are set to unity: � � 
�� � � 1.
On each round

�
, the learner computes mixed strategy

� �
by

normalizing the weights:

� � 
 � �	� � � 
�� ��
� � � 
 � � �

Then, given ��
���
�� � � for each � , the learner updates the
weights by the simple multiplicative rule:� ���

1 
 � � � � � 
�� ��� � ��� � � �
	�� �
Here,

��
 � 0 
 1 � is a parameter of the algorithm.
The main theorem concerning this algorithm is the fol-

lowing:

Theorem 1 For any matrix M with � rows and entries in
� 0 
 1 � , and for any sequence of mixed strategies Q1 
������ 
 Q  
played by the environment, the sequence of mixed strategies
P1 
������ 
 P  produced by algorithm LW with parameter

��

� 0 
 1 � satisfy: � � � 1

M 
 P � 
 Q � ������� min
P

 � � � 1

M 
 P 
 Q � ������� ln �
where � � � ln 
 1 � � �

1 � � � � � 1
1 � � �

Proof: The proof follows directly from Theorem 2 of Freund
and Schapire [9], which in turn is a simple and direct general-
ization of Littlestone and Warmuth [15]. For completeness,
we provide a short proof in the appendix.

As
�

approaches 1, ��� also approaches 1. In addition,
for fixed

�
and as the number of rounds � becomes large,

the second term � � ln � becomes negligible (since it is fixed)
relative to � . Thus, by choosing

�
close to 1, the learner can

ensure that its loss will not be much worse than the loss of the
best strategy. This is formalized in the following corollary:

Corollary 2 Under the conditions of Theorem 1 and with
�

set to
1

1 ��� 2 ln � 


the average per-trial loss suffered by the learner is

1�
 � � � 1

M 
 P � 
 Q � ��� min
P

1�
 � � � 1

M 
 P 
 Q � ��� ∆  
where

∆  � � 2 ln �� � ln �� ��!�"#� ln ��%$ �
Proof: See Section 2.2 in Freund and Schapire [9].

Since ∆  '& 0 as � &)( , we see that the amount by
which the average per-trial loss of the learner exceeds that
of the best mixed strategy can be made arbitrarily small for
large � .

For simplicity, the results in the remainder of the pa-
per are based on Corollary 2 rather than Theorem 1. The
details of the algorithm about which this corollary applies
are largely unimportant and could, in principle, be applied
to any algorithm with similar properties. Indeed, algorithms
for this problem with similar properties were derived by Han-
nan [13],1 Blackwell [1] and Foster and Vohra [6, 5, 4]. Also,
Fudenberg and Levine [10] independently proposed an algo-
rithm equivalent to LW and proved a slightly weaker version
of Corollary 2.

As a simple first corollary, we see that the loss of LW can
never exceed the value of the game � by more than ∆  .

Corollary 3 Under the conditions of Corollary 2,

1�
 � � � 1

M 
 P � 
 Q � � � �*� ∆ 
where � is the value of the game M.

Proof: Let
���

be a minmax strategy for � so that for all
column strategies � , ��
 ��� 
�� ��� � . Then, by Corollary 2,

1�
 � � � 1

��
 � � 
�� � � � 1�
 � � � 1

��
 � � 

� � ��� ∆ � �*� ∆  �
Note that in the analysis we made no assumption about the

strategy used by the environment. Theorem 1 guarantees that
its cumulative loss is not much larger than that of any fixed
mixed strategy. As shown above, this implies, in particular,
that the loss cannot be much larger than the game value.
However, if the environment is non-adversarial, there might
be a better fixed mixed strategy for the player, in which case
the algorithm is guaranteed to be almost as good as this better
strategy.

2.5 PROOF OF THE MINMAX THEOREM
More interestingly, Corollary 2 can be used to derive a very
simple proof of von Neumann’s minmax theorem. To prove
this theorem, we need to show that

min
P

max
Q

M 
 P 
 Q � � max
Q

min
P

M 
 P 
 Q ��� 
 4 �
1However, Hannan’s algorithm requires prior knowledge of the

entire game matrix.
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(Proving that minP maxQ M 
 P 
 Q � � maxQ minP M 
 P 
 Q � is
relatively straightforward and so is omitted.)

Suppose that we run algorithm LW against a maximally
adversarial environment which always chooses strategies
which maximize the learner’s loss. That is, on each round

�
,

the environment chooses

Q
� � arg max

Q
M 
 P � 
 Q �
� 
 5 �

Let
� � 1 �  � � 1

� �
and � � 1 �  � � 1 � � . Clearly,

�
and �

are probability distributions.
Then we have:

min
P

max
Q

PTMQ

� max
Q

P
T
MQ

� max
Q

1�
 � � � 1

P
� TMQ by definition of P

� 1�
 � � � 1

max
Q

P
� TMQ

� 1�
 � � � 1

P
� TMQ

�
by definition of Q

�

� min
P

1�
 � � � 1

PTMQ
� � ∆ by Corollary 2

� min
P

PTMQ � ∆  by definition of Q

� max
Q

min
P

PTMQ � ∆  �
Since ∆ can be made arbitrarily close to zero, this proves
Eq. (4) and the minmax theorem.

2.6 APPROXIMATELY SOLVING A GAME

Aside from yielding a proof for a famous theorem that by
now has many proofs, the preceding derivation shows that
algorithm LW can be used to find an approximate minmax or
maxmin strategy. Finding these “optimal” strategies is called
solving the game � .

Skipping the first inequality of the sequence of equalities
and inequalities above, we see that

max
Q

M 
 P 
 Q � � max
Q

min
P

M 
 P 
 Q ��� ∆  � � � ∆ �
Thus, the vector

�
is an approximate minmax strategy in the

sense that for all column strategies � , ��
 � 
�� � does not
exceed the game value � by more than ∆  . Since ∆  can
be made arbitrarily small, this approximation can be made
arbitrarily tight.

Similarly, ignoring the last inequality of this derivation,
we have that

min
P

M 
 P 
 Q � � � � ∆  
so � also is an approximate maxmin strategy. Furthermore, it
can be shown that � � satisfying Eq. (5) can always be chosen
to be a pure strategy (i.e., a mixed strategy concentrated on
a single column of � ). Therefore, the approximate maxmin

strategy � has the additional favorable property of being
sparse in the sense that at most � of its entries will be nonzero.

Viewing LW as a method of approximately solving a
game will be central to our derivation of a boosting algorithm
(Section 4).

Similar and closely related methods of approximately
solving linear programming problems have previously ap-
peared, for instance, in the work of Plotkin, Shmoys and
Tardos [16].

3 ON-LINE PREDICTION
Since the game-playing algorithm LW presented in Sec-
tion 2.4 is a direct generalization of the on-line prediction
algorithm of Littlestone and Warmuth [15], it is not surpris-
ing that an on-line prediction algorithm can be derived from
the more general game-playing algorithm by an appropriate
choice of game � . In this section, we make this connection
explicit.

In the on-line prediction model, first introduced by Lit-
tlestone [14], the learner observes a sequence of examples
and predicts their labels one at a time. The learner’s goal is
to minimize its prediction errors.

Formally, let � be a finite set of instances, and let � be a
finite set of hypotheses � : � & �

0 
 1 � . Let � : � & �
0 
 1 �

be an unknown target concept, not necessarily in � .2

In the on-line prediction model, learning takes place in a
sequence of rounds. On round

� � 1 
������ 
 � :

1. the learner observes an example � � 
 � ;

2. the learner makes a randomized prediction ˆ� � 
 � 0 
 1 �
of the label associated with � � ;

3. the learner observes the correct label � 
�� � � .
The goal of the learner is to minimize the expected number
of mistakes that it makes relative to the best hypothesis in
the space � . (The expectation here is with respect to the
learner’s own randomization.) Thus, we ask that the learner
perform well whenever the target � is “close” to one of the
hypotheses in � .

It is straightforward now to reduce the on-line prediction
problem to a special case of the repeated game problem. The
environment’s choice of a column corresponds to a choice
of an instance � 
 � that is presented to the learner on a
given iteration. The learner’s choice of a row corresponds
to choosing a specific hypothesis � 
 � and predicting the
label � 
�� � . A mixed strategy for the learner corresponds
to making a random choice of a hypothesis with which to
predict. In this reduction the environment uses only pure
strategies. The game matrix thus has � ��� rows, indexed by� 
 � and � �	� columns, indexed by � 
 � . The matrix
entry that is associated with hypothesis � and instance � is

��

� 
�� � � �
1 if � 
�� ��
� � 
�� �
0 otherwise.

2As was said above, much of this analysis can be generalized
to infinite sets. The cardinality of the set of examples is actually
of no real consequence. Littlestone and Warmuth [15] generalize
their results to countably infinite sets of hypotheses, and Freund and
Schapire [9] and Freund [8] give generalizations to uncountably
infinite sets of hypotheses.
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Thus, ��
�� 
 � � is 1 if and only if � disagrees with the target� on instance � . We call this a mistake matrix.
The application of the algorithm LW described in Sec-

tion 2.4 to the on-line prediction problem is as follows.3 We
apply the algorithm to mistake matrix � . On round

�
, given

instance � � , LW provides us with a distribution
� �

over rows
of � (i.e., over hypothesis space � ). We randomly select� � 
 � according to

� �
, and predict ˆ� � � � � 
�� � � . Next,

given � 
�� � � , we compute ��
�� 
�� � � for each � 
 � and up-
date the weights maintained by LW. (Here, the strategy � �
is simply the pure strategy concentrated on the � � column of
� .)

For the analysis, note that

M 
 P � 
�� � � � �
����� P

� 

� � M 

� 
�� � �
� Pr���

P 	 � � 
�� � � 
��� 

� � ���� Pr
�
ˆ� � 
��� 

� � � � �

Therefore, the expected number of mistakes made by the
learner equals � � � 1

��
 � � 
�� � � � min�	���  � � � 1

��

� 
�� � ��� !�
�� � ln � ��� 

by a direct application of Corollary 2 (for an appropriate
choice of

�
). Thus, the expected number of mistakes made

by the learner cannot exceed the number of mistakes made

by the best hypothesis in � by more than ! 
 � � ln � ��� 
 .

A more careful analysis (using Theorem 1 rather than
Corollary 2) gives a better bound identical to that obtained by
Littlestone and Warmuth [15] (not surprisingly). Still better
bounds using more sophisticated methods were obtained by
Cesa-Bianchi et al. [2] and Vovk [18].

This result can be straightforwardly generalized to any
bounded loss function (such as square loss rather than zero-
one mistake loss), and also to a setting in which the learner
competes against a set of experts rather than a fixed set of
hypotheses. (See, for instance, Cesa-Bianchi et al. [2] and
Freund and Schapire [9].)

4 BOOSTING
The third topic of this paper is boosting. Boosting is the
problem of converting a “weak” learning algorithm that per-
forms just slightly better than random guessing into one that
performs with arbitrarily good accuracy. The first provably
effective boosting algorithm was discovered by Schapire [17].
Freund [7] subsequently presented a much improved boosting
algorithm which is optimal in particular circumstances. The
boosting algorithm derived in this section is closely related
to Freund and Schapire’s more recent “AdaBoost” boosting
algorithm [9].

3The reduction is not specific to the use of LW. Other algorithms
for playing repeated games can be combined with this reduction to
give on-line learning algorithms. However, these algorithms need to
be capable of working without complete knowledge of the matrix.
It should be sufficient for the algorithm to receive as input only
the identity and contents of columns that have been chosen by the
environment in the past.

As in Section 3, let � be a space of instances, � a space
of hypotheses, and � the target concept. For ��� 0, we say
that algorithm WL is a � -weak learning algorithm for 
 � 
�� �
if, for any distribution � over the set � , the algorithm takes
as input a set of labeled examples distributed according to �
and outputs a hypothesis � 
 � with error at most 1 � 2 ��� ,
i.e., Pr � � Q

� � 

� ��
��� 
�� � � � 1
2 ��� �

Given a weak learning algorithm, the goal of boosting
is to run the weak learning algorithm many times on many
distributions, and to combine the selected hypotheses into a
final hypothesis with arbitrarily small error rate. For the pur-
poses of this paper, we simplify the boosting model further
to require that the final hypothesis have error zero so that all
instances are correctly classified. The algorithm presented
can certainly be modified to fit the more standard (and prac-
tical) model in which the final error must be less than some
positive parameter � (see Freund and Schapire [9] for more
details).4

Thus, boosting proceeds in rounds. On round
� � 1 
������ 
�� :

1. the booster constructs a distribution � � on � which is
passed to the weak learner;

2. the weak learner produces a hypothesis � � 
 � with
error at most 1 � 2 ��� :

Pr� ��� 	 � � � 

� � 
� � 

� ��� � 1
2 ��� �

After � rounds, the weak hypotheses � 1 
������ 
��  are com-
bined into a final hypothesis ����� .

The important issues for designing a boosting algorithm
are: (1) how to choose distributions � � , and (2) how to
combine the � � ’s into a final hypothesis.

4.1 BOOSTING AND THE MINMAX THEOREM
Before describing our boosting algorithm, let us step back for
a moment to consider the relationship between the mistake
matrix � used in Section 3 and the minmax theorem. This
relationship will turn out to be highly relevant to the design
and understanding of the boosting algorithm.

Recall that the mistake matrix � has rows and columns
indexed by hypotheses and instances, respectively, and that
��
�� 
�� ��� 1 if � 
�� � 
� � 

� � and is zero otherwise. As-
suming 
 � 
�� � is � -weakly learnable (so that there exists a� -weak learning algorithm), what does the minmax theorem
say about � ? Suppose that the value of � is � . Then

min
P

max� M 
 P 
�� � � min
P

max
Q

M 
 P 
 Q �� �� max
Q

min
P

M 
 P 
 Q �
� max

Q
min� M 
�� 
 Q ��� (6)

4The standard boosting model usually also includes a “confi-
dence” parameter ��� 0 which bounds the probability of the boost-
ing algorithm failing to find a final hypothesis with low error. This
parameter is necessary if we assume that the weak learner only suc-
ceeds with high probability. However, because we here make the
simplifying assumption that the weak learner always succeeds in
finding a weak hypothesis with error at most 1  2 !#" , we have no
need of a confidence parameter and instead require that the boosting
algorithm succeed with absolute certainty.
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(It is straightforward to show that, for any � , minP M 
 P 
 Q �
is realized at a pure strategy � . Similarly for

�
and � .)

Note that, by � ’s definition,

M 
�� 
 Q � � Pr� � Q

� � 
�� ��
� � 

� ��� �
Therefore, the right hand part of Eq. (6) says that there exists
a distribution � � on � such that for every hypothesis � ,
M 
�� 
 Q � � � Pr � � Q

� � � 

� � 
��� 

� � � � � . However, because
we assume � -weak learnability, there must exist a hypothesis� such that

Pr� � Q
�
� � 
�� � 
��� 
�� � � � 1

2 � � �
Combining these facts gives that ��� 1 � 2 ��� .

On the other hand, the left part of Eq. (6) implies that
there exists a distribution

���
over the hypothesis space �

such that for every � 
 � :

M 
 P � 
�� � � Pr� �
P
�
� � 
�� � 
��� 

� � � � ��� 1

2 ��� � 1
2 �

That is, every instance � is misclassified by less than 1 � 2 of
the hypotheses (as weighted by

� �
). Therefore, the target

concept � is functionally equivalent to a weighted majority
of hypotheses in � .

To summarize this discussion, we have argued that if

 � 
�� � are � -weakly learnable, then � can be computed ex-
actly as a weighted majority of hypotheses in � . Moreover,
the weights used in this function (defined by distribution

� �
above) are not just any old weights, but rather are a minmax
strategy for the game � .

A similar proof technique was previously used by Gold-
mann, Håstad and Razborov [12] to prove a result about the
representation power of circuits of weighted threshold gates.

4.2 IDEA FOR BOOSTING

The idea of our boosting algorithm then is to approximate �
by approximating the weights of this function. Since these
weights are a minmax strategy of the game � , we might
hope to apply the method described in Section 2.4 for ap-
proximately solving a game.

The problem is that the resulting algorithm does not fit
the boosting model. Recall that on each round, algorithm LW
computes a distributionover the rows of the game matrix (hy-
potheses, in the case of matrix � ). However, in the boosting
model, we want to compute on each round a distributionover
instances (columns of � ).

Since we have an algorithm which computes distributions
over rows, but need one that computes distributions over
columns, the obvious solution is to reverse the roles of rows
and columns. This is exactly the approach that we follow.
That is, rather than using game � directly, we construct the
dual of � which is the identical game except that the roles
of the row and column players have been reversed.

Constructing the dual � � of a game � is straightfor-
ward. First, we need to reverse row and column so we take
the transpose � T. This, however, is not enough since the
column player of � wants to maximize the outcome, but
the row player of � � wants to minimize the outcome (loss).
Therefore, we also need to reverse the meaning of minimum
and maximum which is easily done by negating the matrix
yielding � � T. Finally, to adhere to our convention of losses

being in the range � 0 
 1� , we add the constant 1 to every out-
come, which has no effect on the game. Thus, the dual � �
of � is simply

� � ��� � � T

where 1 is an all 1’s matrix of the appropriate dimensions.
In the case of the mistake matrix � , the dual now has

rows and columns indexed by instances and hypotheses, re-
spectively, and each entry is

� � 

� 
�� � � 1 � ��
�� 
�� � � �
1 if � 

� � ��� 
�� �
0 otherwise.

Note that any minmax strategy of the game � becomes a
maxmin strategy of the game � � . Therefore, whereas before
we were interested in finding an approximate minmax strat-
egy of � , we are now interested in finding an approximate
maxmin strategy of � � .

We can now apply algorithm LW to game matrix � �
since, by the results of Section 2.6, this will lead to the con-
struction of an approximate maxmin strategy. The reduction
proceeds as follows: On round

�
of boosting

1. algorithm LW computes a distribution
� �

over rows of
� � (i.e., over � );

2. the boosting algorithm sets � � � � �
and passes � � to

the weak learning algorithm;

3. the weak learner returns a hypothesis � � satisfying

Pr� ��� 	 � � � 

� ��� � 

� � � � 1
2 ��� ;

4. the weights maintained by algorithm LW are updated
where � � is defined to be the pure strategy � � .

According to the method of approximately solving a game
given in Section 2.6, on each round

�
, � � may be a pure

strategy � � and should be chosen to maximize

M
� 
 P � 
�� � � � �

� P
� 
�� � M � 
�� 
 � � � � Pr� � P 	 � � � 

� ����� 
�� � � �

In other words, � � should have maximum accuracy with re-
spect to distribution

� �
. This is exactly the goal of the weak

learner. (Although it is not guaranteed to succeed in finding
the best � � , finding one of accuracy 1 � 2 � � turns out to be
sufficient for our purposes.)

Finally, this method suggests that � � 
 1 � � ���  � � 1 � � is
an approximate maxmin strategy, and we know that the target� is equivalent to a majority of the hypotheses if weighted by a
maxmin strategy of � � . Since � � is in our case concentrated
on pure strategy (hypothesis) � � , this leads us to choose a final
hypothesis � ��� which is the (simple) majority of � 1 
������ 
��  .

4.3 ANALYSIS

Indeed, the resulting boosting procedure will compute a final
hypothesis � ��� identical to � for sufficiently large � . We
show in this section how this follows from Corollary 2.

As noted earlier, for all
�
,

M
� 
 P � 
�� � � � Pr� � P 	 � � � 

� � ��� 
�� � � � 1

2 � � �
6



Therefore, by Corollary 2,

1
2 ��� � 1�

 � � � 1

� � 
 � � 
�� � ��� min� 1�
 � � � 1

� � 

� 
�� � ��� ∆ �
Therefore, for all � ,

1�
 � � � 1

� � 
�� 
 � � � � 1
2 � �
� ∆  � 1

2 
 7 �

where the last inequality holds for sufficiently large � (specif-
ically, when ∆  � � ). Note that, by definition of � � ,�  � � 1 �

� 
�� 
�� � � is exactly the number of hypotheses � � which
agree with � on instance � . Therefore, in words, Eq. (7) says
that more than half the hypotheses � � are correct on � . There-
fore, by definition of � ��� , we have that � ��� 

� � � � 

� � for
all � .

For this to hold, we need only that ∆  � � , which will
be the case for � � Ω 
 ln � � � ��� 2 � .

The resulting boosting algorithm, in which the game-
playing subroutine LW has been “compiled out” is shown in
Fig. 1. The algorithm is actually quite intuitive in this form:
after each hypothesis � � is observed, the weight associated
with each instance � is decreased if � � is correct on that
instance and otherwise is increased. Thus, each distribution
focuses on the examples most likely to be misclassified by
the preceding hypotheses.

In practice, of course, the booster would not have access
to the labels associated with the entire domain � . Rather,
the booster would be given a labeled training set and all dis-
tributions would be computed over the training set. The gen-
eralization error of the final hypothesis can then be bounded
using, for instance, standard “VC theory” (see Freund and
Schapire [9] for more details).

A more sophisticated version of this algorithm, called
AdaBoost, is given by Freund and Schapire [9]. The advan-
tage of this version is that the learner does not need to know
a priori the minimum accuracy rate of each weak hypothesis.

5 SUMMARY

In sum, we have shown how the two well-studied learning
problems of on-line prediction and boosting can be cast in a
single game-theoretic framework in which the two seemingly
very different problems can be viewed as “duals” of one
another.

We hope that the insight offered by this connection will
help in the development and understanding of such learn-
ing algorithms since an algorithm for one problem may, in
principle, be translated into an algorithm for the other. As
a concrete example, the boosting algorithm described in this
paper was derived from Littlestone and Warmuth’s weighted
majority algorithm by following this dual connection.
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Input: instance space � and target �� -weak learning algorithm

Set � � �
4� 2 ln � � � � (so that ∆  � � ).

Set
� � 1 � 
 1 � � 2 ln � � � � � � .

Let � 1 

� ��� 1 � � �	� for � 
 � .
For

� � 1 
������ 
�� :� Pass distribution � � to weak learner.� Get back hypothesis � � such that

Pr� ��� 	 � � � 

� � 
� � 

� ��� � 1
2 ��� �

� Update � � :
� ��� 1 
�� � � � � 
�� �� � � � �

if � � 
�� � ��� 
�� �
1 otherwise

where
� �

is a normalization constant (chosen so that� ��� 1 will be a distribution).

Output final hypothesis � ��� � MAJ 

� 1 
������ 
 �  � .
Figure 1: The boosting algorithm.
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A PROOF OF THEOREM 1

For
� � 1 
�������
�� , we have that�� � � 1

� ���
1 
 � � � �� � � 1

� � 
 � � � � ��� � � � 	 �
� �� � � 1

� � 
 � � ��
 1 � 
 1 � � ����
 � 
�� � � �
� " �� � � 1

� � 
�� � $ � 
 1 � 
 1 � � ����
 � � 
�� � �����
The first line uses the definition of � ��� 1 
 � � . The second line
follows from the fact that

� � � 1 � 
 1 � � � � for
� � 0 and� 
 � 0 
 1 � . The last line uses the definition of

� �
.

Unwrapping this simple recurrence gives�� � � 1

�  � 1 
 � � � � �  �� � 1


 1 � 
 1 � � ����
 � � 
�� � ����� 
 8 �

(Recall that � 1 
 � � � 1.)

Next, note that, for any � ,�� � � 1

�  � 1 
�� � � �  � 1 
 � � � � ��� 	�� 1
��� �
� �
	�� �

Combining with Eq. (8) and taking logs gives


 ln � �  � � � 1

��
 ��
�� � �
� ln � �  � � � 1

ln 
 1 � 
 1 � � ����
 � � 

� � � �
� ln � � 
 1 � � �  � � � 1

��
 � � 

� � �
since ln 
 1 � � ��� � � for � � 1. Rearranging terms, and
noting that this expression holds for any � gives � � � 1

��
 � � 

� � ����� � min�
 � � � 1

��
 � 

� � � ����� ln � �
Since the minimum (over mixed strategies

�
) in the bound

of the theorem must be achieved by a pure strategy � , this
implies the theorem.
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