
CS1951k/2951z, Spring 2020 Lab 1: Strategies for Repeated Games

1 Trading Platform

Throughout CS1951k/2951z, we will simulate auctions and other games using a trading platform (Trading-
Platform; TP) that simulates trading in user-defined environments by user-designed autonomous agents
in real time. This platform was designed and built by Professor Greenwald in conjunction with past TAs and
students of CS1951k/2951z, most notably Luke Camery (’17) and Andrew Coggins (’18).

TP is a Java program, built using a client-server model to support the creation of trading environments for
autonomous agents. One of our primary goals in developing this platform is to provide a system in which
users can easily create a consistent, yet diverse and robust, array of trading agent games. We are testing out
its viability in CS1951k/2951z by using it to create various games, from a simple repeated prisoners’ dilemma
to a combinatorial auction for wireless spectrum.

In this lab, we will be working with TP to implement agent strategies for two different 2-player games: The
Prisoner’s Dilemma and Rock-Paper-Scissors. The two agent strategies that you will be implementing
to play these games are called Fictitious Play and Exponential Weights. Both algorithms are known to
converge to Nash equilibrium in repeated zero-sum games.1,2

2 The Prisoners’ Dilemma

The Prisoners’ Dilemma is one of the most well-known and fundamental problems in Game Theory. One
version of the story goes as follows:

Alice and Bob are suspected of committing the same crime. They are being questioned simultaneously in
separate rooms, and cannot communicate with each other. Each prisoner has the option to either cooperate
(do not incriminate the other prisoner) or defect (implicate the other prisoner). If one cooperates and one
defects, the cooperating prisoner receives a lengthy jail sentence (i.e., a large negative reward), while the
defecting prisoner goes free. Should they both cooperate, they get shorter jail sentences; and should they
both defect, they get longer sentences, although shorter than had one prisoner cooperated (the judge goes
easier on them, since they both assisted in the prosecution of the other).

The payoff matrix of this game as is follows:

C D
C -1, -1 -3, 0
D 0, -3 -2, -2

Question: Does this game have an equilibrium? If so, what is it?

3 Rock-Paper-Scissors

Rock-Paper-Scissors, or Rochambeau, can also be represented as a game. (If you are not familiar with the
rules of this game, we refer you to Homework 1.)

Rock-Paper-Scissors is an example of a zero-sum game, because one player’s win is the other player’s loss.
Its payoff matrix is as follows:

1Julia Robinson. An iterative method of solving a game. Annals of Mathematics, 54(2):296—301, 1951.
2Yoav Freund & Robert Schapire. Game theory, on-line prediction and boosting. Proceedings of the 9th Annual Conference

on Computational Learning Theory, pp. 325–332, 1996.

1

CS1951k/2951z, Spring 2020 Lab 1: Strategies for Repeated Games

R P S
R 0, 0 -1, 1 1, -1
P 1, -1 0, 0 -1, 1
S -1, 1 1, -1 0, 0

Question: Does this game have an equilibrium? If so, what is it? (Brainstorm about the answer to this
question with your partner, but there is no need to derive the solution in lab, as you will do so on Homework 1.)

4 Fictitious Play

Recall from class our analysis of the p-Beauty Contest. Did the class play an equilibrium strategy? They did
not, and nor did the experimental subjects in Nagel’s research paper.3

If your opponents in a game cannot be “trusted” to play the equilibrium, or if there is more than one
equilibrium, an alternative is to learn how your opponents are actually playing the game, and to best respond
to their behavior. This is the essence of the Fictitious Play strategy.

Fictitious Play collects empirical data during a repeated game. It then builds an empirical probability
distribution over the opponents’ actions based on their play history, which it then takes as a prediction of
their next action (or action profile, if there are multiple opponents). Finally, it searches among its actions
for the one that yields the highest expected payoff, given its prediction.

4.1 Prisoner’s Dilemma

After hundreds of rounds of the Prisoner’s Dilemma, you observe that your opponent defects 80% of the time.
What is your best move?

C (20%) D (80%)
C -1, -1 -3, 0
D 0, -3 -2, -2

As the row player:

• Cooperating gives an expected payoff of 0.2(−1) + 0.8(−3) = −2.6
• Defecting gives an expected payoff of 0.2(0) + 0.8(−2) = −1.6

Thus, Defect is your best move. Of course, Defect is also the dominant strategy in this game, so no
prediction about your opponent’s next move would ever lead you to Cooperate. Fictitious play becomes
far more interesting in the absence of a dominant strategy.

4.2 Rock-Paper-Scissors

Imagine that you and your friend have been playing Rock-Paper-Scissors for hours on end. You have been
playing each move with equal probability. Meanwhile, your friend has been choosing Rock 25% of the time,
Paper 25% of the time, and Scissors, the remaining 50%. It’s time to figure out whether you’ve been playing
your best strategy, or if you can do better.

Once again, the Rock-Paper-Scissors payoff matrix is below:

3Rosemarie Nagel. Unraveling in guessing games: An experimental study. American Economic Review, 85(5):1313–26, 1995.

2

CS1951k/2951z, Spring 2020 Lab 1: Strategies for Repeated Games

R (25%) P (25%) S (50%)
R 0, 0 -1, 1 1, -1
P 1, -1 0, 0 -1, 1
S -1, 1 1, -1 0, 0

You are the row player. You opponent’s move probabilities are shown.

Question: What is your expected payoff if you play each move with equal probability?

Question: What is your best move according to Fictitious Play? What is its expected payoff? Is it a better
strategy than what you’ve been doing?

Question: Fictitious Play is not merely a two-player game strategy; it can be extended to any repeated game
where the payoff matrices is known and opponents’ actions are observed. What are some of the strengths
and weaknesses of this strategy? In which situations does it work well, and in which situations is it limited?

4.3 Simulation: Implementing Fictitious Play

For the first coding section of this lab, you will be implementing a Fictitious Play agent for Rock-Paper-
Scissors. Your agent will compete against a TA-built bot in a 100-round simulation.

4.3.1 Installing the Game Simulator

In order to install the Game Simulator and the agent stencil code:

1. Open a terminal and type eclipse & to open Eclipse.
2. Either create a new workspace, or use a pre-existing one.
3. Create a new project (New → Java Project). Eclipse will ask if you would like to create “module-

info.java”. Choose Don’t Create.
4. Right click on your project, then choose Build Path → Configure Build Path.
5. Under the Libraries tab, click Add External JARs on the right hand side, and import the following

file:
• /course/cs1951k/pub/2020/game_simulator/GameSimulator.jar

6. Expand your project directory, right click on src, and create a new package to put your agents in.
7. Download the template agent files from the course website, then drag and drop them into your package.

Change the package declaration in the template agents (line 1) to match your package in Eclipse.

4.3.2 Implementing your Agent

You will be implementing Fictitious Play in RpsFictitiousPlayAgent.java.

To do so, you will need to fill in two methods:

1. predict uses the opponent’s previous moves to generate and return a probability distribution over the
opponent’s next move.

2. optimize a probability distribution over the opponent’s moves, along with knowledge of the payoff
matrix, to calculate the best move according to the Fictitious Play strategy.

Note: Check out RpsSampleAgent.java to see a sample implementation of an agent that always plays the
opponent’s previous move. This should give you a good idea of how to write agent code for our platform.

3

CS1951k/2951z, Spring 2020 Lab 1: Strategies for Repeated Games

4.3.3 Running the Simulation

Once your methods are filled in, simply click the Run button in Eclipse. This should launch a simulation, in
which your agent will compete against our bot. After 100 rounds of Rock-Paper-Scissors, the results of the
game will be displayed. If Fictitious Play has been implemented correctly, your agent should win, earning
payoffs of about 10 units more than our bot over the 100 rounds (although our bot’s strategy is randomized,
so you may not see this outcome every time).

Note: Because these simulations rely on launching a server, you will need to make sure you Stop the
program once the game is over—it does not terminate on its own. If you try to stop the program, and
still get a “port already in use” error when running it again, try right-clicking on the console and selecting
Terminate/Disconnect All. If that does not work, please ask a TA for help.

5 Exponential Weights

Another popular agent strategy for learning in repeated games is Exponential Weights. This strategy does
not require knowledge of other players’ actions; it only requires that your agent keep track of its own results!

An agent using Exponential Weights simply keeps track of its average reward over time from playing each
of its actions. Using these average rewards, the agent builds a probability distribution, from which its next
action is sampled. This strategy works under the assumption that you should continue to choose actions that
have been historically strong for you, but at the same time, you should continue to explore other actions with
at least some small probability, in case the environment changes.

Here is a more formal description of the strategy. Given a set of available actions A, and a vector of historical
average rewards R ∈ R|A|, then the probability of choosing action a ∈ A is:

p(a) =
eRa∑

a′∈A eRa′

For example, in a game where choosing action x has provided an average reward of 2 and choosing action y
has provided an average reward of 1.5, your next move is sampled from:

p(x) =
e2

e2 + e1.5
≈ 62%

p(y) =
e1.5

e2 + e1.5
≈ 38%

Question: Compared to Fictitious Play, what are some benefits and drawbacks of Exponential Weights?

Question: There are a few variations of Exponential Weights. For examples, some versions assign higher
weights to more recent moves based on the assumption that these moves are more relevant. When would you
expect a version like this to work well?

5.1 Simulation: Implementing Exponential Weights

Next, you will be implementing an Exponential Weights agent for Rock-Paper-Scissors, just as you did for
Fictitious Play.

You will be implementing Exponential Weights in RpsExponentialWeightsAgent.java.

To do so, you will need to fill in one method:

4

CS1951k/2951z, Spring 2020 Lab 1: Strategies for Repeated Games

1. calcMoveProbabilities uses your historical average rewards to generate a probability distribution
over your next move using the Exponential Weights strategy.

Note: The code handles the sampling for you; all you need to do is return a distribution.

If you completed the Fictitious Play section, you should not have do any addition work to install and run
the simulation. Simply Run the agent file and your agent will once again face a bot for 100 rounds. Once
again, if your implementation is correct, your agent should win, earning payoffs of about 10 units more than
our bot over the 100 rounds.

Question: Does one of the two strategies perform much better than the other against our bot?

6 Competition

Having implemented two agent strategies, and run the first two simulations, you should have a pretty good
idea of how the platform works by now. More importantly, you may also have some good ideas for strategies
that can be used to play different games.

To conclude this lab, you will be implementing an agent to play the game of Chicken. Your agent will
compete with an agent developed by another pair of students in this lab, as usual for 100 rounds. In this
competition, you are free to use any strategy you want, whether it is inspired by the ideas reviewed today, or
something completely original.

6.1 Chicken

Chicken, like the Prisoner’s Dilemma, is a symmetric two-player, two-action, non-zero-sum game.

The premise is that two daredevil stuntmen are trying to impress a casting director in order to be chosen
for Fast and Furious 12. The two stuntmen are driving in opposite directions on the road and are about
to collide, head-on. Each has the option to Swerve or Continue going straight. If both players continue,
they will crash, and receive a massive negative payoff in the form of injuries. If they both swerve, neither is
rewarded with the part, as the casting director in unimpressed. But if one swerves and one continues, the
swerving player loses face, while the player who continued is rewarded handsomely.

Chicken is defined by the following payoff matrix:

S C
S 0, 0 -1, 1
C 1, -1 -5, -5

The only way to win is to continue while the other player swerves. But are you willing to risk it?

6.2 Implementing your Agent

You will implement your agent that plays Chicken in ChickenAgent.java.

To do so, you will only need to fill in the nextMove method. This method should execute your strategy, and
then return either SWERVE or CONTINUE.

Note that your agent must return its move within 1 second. If your nextMove method takes any
longer than that, your action will not register.

5

CS1951k/2951z, Spring 2020 Lab 1: Strategies for Repeated Games

Because you may want to use some strategies from the previous simulations, we have included the helper
methods they use in ChickenAgent.java. These include methods to get your average reward for a given
action, a list of your opponent’s previous moves, a list of your own previous moves, and the hypothetical
payoff from a pair of actions. We have also included a method to sample a probability distribution. However,
you are encouraged to expand your strategies beyond what we have already used today.

6.3 Running Your Agent

In order to enter the competition, you will need to give your agent a name. You will also need to input the
correct host. Please wait for TA instructions on how to do this.

Once your agent is ready, the TAs will begin the competition by launching a server. Once that has happened,
you will have a short window of time to Run your agent file. After the registration window is over, your
agent will be paired up with another agent for 100 rounds, after which you will receive your game results.

6

	Trading Platform
	The Prisoners' Dilemma
	Rock-Paper-Scissors
	Fictitious Play
	Prisoner's Dilemma
	Rock-Paper-Scissors
	Simulation: Implementing Fictitious Play
	Installing the Game Simulator
	Implementing your Agent
	Running the Simulation

	Exponential Weights
	Simulation: Implementing Exponential Weights

	Competition
	Chicken
	Implementing your Agent
	Running Your Agent

