
CS1951k, Spring 2020 Final Project: Spectrum Auction

Final Project: Spectrum Auction

1 Introduction

This final project option is a Spectrum Auction, which builds on the work we did in Labs 4, 5, and 6.

2 Game Description

The model of the world, goods, bidders, and valuations is simply a larger version of the setup in Lab 6, which
is the Global Synergy Value Model (GSVM). In particular, whereas that version, GSVM-9, had 9 goods
and 5 bidders, this version, GSVM-18, has 18 goods and 7 bidders.

Additionally, you may recall that the labs were conducted as simultaneous second-price auctions. In the
final project, we will instead be running simultaneous ascending auctions in an auction format known
as Simultaneous Multiple-Round Auctions (SMRA).

2.1 The GSVM-18 Model

GSVM-181 is a small model of a spectrum auction. There are 18 goods, labelled A through R. Twelve of
them are characterized as national goods, and the other six are characterized as regional. In addition, there
is 1 national bidder and 6 regional bidders. The following rules and restrictions are in place:

• The bidders are interested in the various goods as indicated by the following diagram.

• Bidders may only place bids on goods they are interested in. For example, regional bidder 5 can only
bid on goods {K, L, I, J, R, Q}.

• While the national bidder may bid on all twelve goods of interest, each regional bidder may only bid
on up to four goods, despite being interested in six.

1Jacob K. Goeree and Charles A. Holt. Hierarchical package bidding: A paper & pencil combinatorial auction. Games and
Economic Behavior. 70(1):146–169.

https://en.wikipedia.org/wiki/Spectrum_auction
http://cs.brown.edu/courses/cs1951k/labs/2020/lab04/Lab04_Handout.pdf
http://cs.brown.edu/courses/cs1951k/labs/2020/lab05/Lab05_Handout.pdf
http://cs.brown.edu/courses/cs1951k/labs/2020/lab06/Lab06_Handout.pdf


CS1951k, Spring 2020 Final Project: Spectrum Auction

• There are global complements—the valuation of any bundle increases by an additional 20% with the
addition of another good.

Valuations are drawn from the following distributions:

• For the national bidder:

– U[0, 10] for items A–D and I–L

– U[0, 20] for items E–H

• For regional bidders:

– U[0, 20] for items A–D, I–L, and M–R

– U[0, 40] for items E–H

2.2 Simultaneous Multiple-Round Auctions (SMRA)

The mechanism your agent will bid in for the project is a variant of Simultaneous Multi-Round Auction
(SMRA). SMRA are simultaneous ascending auctions, which solicit bids in all the auctions from all the
agents synchronously (i.e., in rounds). Furthermore, all the auctions end simultaneously, when there is no
further bidding in any of them.

The ascending auction that will populate our SMRA mechanism is a variant of eBay’s auction design. In this
auction, the price in each auction in each round is given by the second-highest bid, floored by a fixed price
increment ε. Between rounds, the prices across all auctions are broadcast to all agents, as are the identities
of the tentative winners.

The eBay auction rule allows for the possibility of jump bidding. Jump bidding means that prices need
not ascend uniformly. Instead, they can jump by multiple increments, as dictated by the second-highest bid.
Jump bidding gives agents an opportunity to strategize, as they can “stake out their territory” by bidding
high in some auctions.

Finally, SMRA also generally invokes an activity rule. Activity rules in ascending auctions are designed to
encourage sincere bidding. Likewise, they tend to discourage exiting the auction only to re-enter later. Our
particular choice of activity rule—revealed preference—is described in Section 2.3. Before delving into those
details, we present the high-level auction procedure for our version of SMRA:



CS1951k, Spring 2020 Final Project: Spectrum Auction

Algorithm 1 Run the SMRA Spectrum Auction
Set the price of all goods to 0
Begin with an empty tentative allocation

do
Broadcast all current prices and each bidder’s tentative allocation
Get bid vectors from each bidder, one bid per good
Prune bids that do not exceed current prices by the bid increment ε
Prune bids that violate the revealed preference activity rule
Call the remaining bids valid
if the set of valid bids is non-empty then

for each good do
Tentatively allocate to a highest bidder
if there are multiple bidders then

Update the price to the second-highest bid
else if the good changed hands since the last round then

Update the price to the current price plus ε
end if

end for
end if

while the set of valid bids is non-empty

The final allocation and final payments are set to be the outcome that maximized revenue, maximizing
over all rounds.

For example, if the current price in one of the auctions is 6 and ε = 2, then all bidders must bid at least 8 for
the good for their bids to be considered valid. If nobody bids at least 8 for the good, the price remains at 6.
If multiple bidders bid above 8, the good will be tentatively allocated to a highest bidder at the price of the
second-highest (valid) bid. If only one bidder bids above 8, and if that bidder is not currently winning the
good, they will be tentatively allocated the good at price 8. If the sole bidder above 8 is currently winning
the good, neither the current price nor the current allocation will change.

This final allocation and payment rule is inspired by Ausubel et al.’s clock-proxy auction.2 The bids in the
final round may not be the ones that yield the highest revenue (or welfare), because some bidders may stop
bidding on some bundles if they become too expensive. In such cases, it is useful to give the auctioneer the
freedom to revert back to an earlier allocation and payments to maximize revenue (or welfare).

2.3 The Revealed Preference Rule

The revealed preference rule is an activity rule which we will adopt to determine the validity of a bid
in our SMRA auction. Like any activity rule, its purpose is to restrain bidders to the space of “reasonable”
strategies; in particular, this rule is designed to discourage bidders from re-entering the ascending market for
a good after previously exiting it.

The revealed preference rule is defined as follows: If a bidder switches its preferred demand set from bundle
S to bundle T , then it must have been that since the time when S was preferred, the price of T increased by
less than the price of S. Alternatively, if the price of T increased by more than the price of S, then a bidder
cannot switch from preferring S to preferring T .

To present the revealed preference rule formally, we introduce the following notation: Let m be the number
of goods (i.e., ascending auctions). Let s < t be two rounds in the auction. Let ps and pt be vectors in Rm

2Lawrence M. Ausubel, Peter Cramton, and Paul Milgrom. The Clock-Proxy Auction: A Practical Combinatorial Auction
Design. In Combinatorial Auctions. Peter Cramton, Yoav Shoham, and Richard Steinberg (editors). MIT Press, Chapter 5,
115–138, 2006.



CS1951k, Spring 2020 Final Project: Spectrum Auction

describing good prices at rounds s and t, respectively. Let xs and xt be vectors in {0, 1}m describing the
bundles a bidder demands at rounds s and t, respectively (i.e., all goods for which it submits a valid bid).

If a bidder is bidding sincerely, then at round s, xs is the set of goods that is utility maximizing:

v(xs)− ps · xs ≥ v(xt)− ps · xt.

Similarly, at round t, xt is the set of goods that is utility maximizing:

v(xt)− pt · xt ≥ v(xs)− pt · xs.

Combining these inequalities yields the revealed preference rule:

(pt − ps) · (xt − xs) ≤ 0.

This rule ensures that sincere bidders will not take a break from bidding part way through the auction,
because if they do (i.e., if they report the empty set as their favorite bundle), and then if prices go up
on some goods, then they can no longer bid on bundles that contain those goods. In particular, this rule
discourages bidders from sitting out the very first round.

2.4 Game Specifics

• Our price increment, ε = 2.5.

• To make sure our simulated auctions don’t run indefinitely, we will cap their number of rounds. If an
auction reaches a predetermined final round without having terminated, it will end abruptly at that
point. This number will be drawn from an exponential distribution, and is guaranteed to be at least
30. Although this distribution is common knowledge, the draw will not be revealed to your agent, as
knowing this number would facilitate sniping.3

3 Strategy and Considerations

This is a very complex game and requires several strategic considerations beyond what was in play for Labs
4, 5, and 6.

First, due to the combinatorial nature of this auction, there are an exponential number of possible bundles
on which your agent can bid. This number is especially large for the national bidder, so any strategy that
involves enumerating them all will not be viable. How will your agent determine which bundle to bid on,
and at what prices, in an efficient manner?

Second, how high above the price thresholds will your agent bid? Due to the second-price nature of these
auctions, your agent could submit high bids to secure a tentative allocation, without risking having to pay
too high a price? But would doing so potentially reveal too much information to other bidders? In other
words, should your agent bid high right from the start, revealing its interests to other bidders—a form of
cooperative behavior—or should it lay low at first, gauging its opponents’ strategies—how cooperative are
they?—before bidding too aggressively: i.e., showing its cards?

Third, how will your agent’s strategy differ when it is the national bidder, versus a regional bidder? There
is more competition for national goods; will this affect your agent’s bidding strategy? Will you incorporate
the valuation distributions (which are public knowledge) to try to predict the bids of opposing agents, and
ultimately the final auction prices?

3urbandictionary.com defines sniping as the act of bidding on an item on eBay literally seconds before the auction ends.
This prevents anyone from outbidding you while also ensuring that you don’t bump the price up too much.

urbandictionary.com


CS1951k, Spring 2020 Final Project: Spectrum Auction

In addition to these considerations, a successful agent strategy for this game will comprise many others.
We suggest building a theoretical model of the game (consider starting your writeup!) before attempting to
implement an agent strategy. This model will help you envision even more of the many important factors
that your agent’s strategy should try to take into account.

4 Code: Installation, Testing, and Submission

Please read the following instructions carefully, as it is essential that your code runs successfully with our
game server, and that your handin is correctly formatted.

4.1 Installation

Download the stencil code from the course website. Just as in Labs 7 and 8, the stencil code is an entire Java
project, complete with a package structure and a file called pom.xml, along with a few python scripts.

We will be using the Apache Maven build system for this project. Put simply, Maven allows us to export
our Java projects into runnable JAR files in a standardized fashion (as defined in pom.xml, which acts as a
configuration file for Maven).

If you do not already have Maven installed, please download and install it. If you are working on a department
machine or via FastX, you will already have Maven installed, which you can verify by running mvn -version.

If you have not installed Eclipse on your machine, you should download that as well.

Once you have installed Maven and unzipped the stencil code, open Eclipse and select File → Import.

https://maven.apache.org/
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://www.eclipse.org/downloads/


CS1951k, Spring 2020 Final Project: Spectrum Auction

Then, select Maven → Existing Maven Project.

Finally, navigate to, and select, the stencil project and make sure pom.xml is selected. Select Finish.



CS1951k, Spring 2020 Final Project: Spectrum Auction

This will create an Eclipse project for this lab. Your task resides in the file MySpectrumAuctionAgent.java
in the package agent under src/main/java. Feel free to create and use any other packages, classes, etc.
within the project, as long as you do not change the location or name of MySpectrumAuctionAgent.java.

4.2 Local Testing (and Training)

If you would like to test out your agent against other agents, run your MySpectrumAuctionAgent file in
Eclipse. The main method instantiates 10 agents, including your own, and runs an offline simulation (in
order to not have to deal with server delays and wait times). This simulation consists of 42 iterations of the
Spectrum Auctions game.

As with any programming project, you should test your programs extensively. In addition to the usual unit
tests, etc., you should play test games against other agents. You can test against 9 copies of your own agent,
9 copies of our Tier 1 TA Agent (see Section 6), or any combination thereof. You can also create your own
dummy agents to test your own agent against; just create a class extending AbsSpectrumAuctionAgent. To
set the agents to test against, you should edit the agent types in src/main/resources/offline_test_config.json.

If you design a strategy that involves training, you can submit a pre-trained agent. Then, to use a pre-
trained agent that reads its input from a file, please place the file in src/main/resources and read it using
getResourceAsStream(); see this guide. By including your file in the resource folder, you will ensure that
it is included in the executable JAR we use to run your submission; file-reading is thus independent of the
specifics of the filesystem.

4.3 Submission

You will be submitting your code via the course handin script.

First, if you are not already working on a department machine or via FastX, you will need to transfer your
files to the department filesystem. We have provided a utility to do this upload for you. You are free to
transfer the files any way you’d like—this utility is just an attempt to simply your life.4

To use this utility, from your project’s root directory, run python3 upload.py.5 It will transfer your files to
/course/cs1951k/student/<cslogin>/SpectrumAuction. (We have created student directories for you so
that you don’t need to use up tons of space in your personal filesystem.)

Next, SSH to Brown, and navigate to your project’s root directory (if you used the upload script,
/course/cs1951k/student/<cslogin>/SpectrumAuction).

4Well, not really. Just this very very small part of it.
5To run this script, you will need Python 3. You may also need to install it, as well as the pysftp library, via pip.

https://mkyong.com/java/java-getresourceasstream-in-static-method/


CS1951k, Spring 2020 Final Project: Spectrum Auction

To make sure that your agent will work as intended when being run the way we run handins, we have provided
a script that launches the server, along with your agent and 9 opponent bots. You should run this script to
make sure your agent connects to the server properly, doesn’t crash, and properly submits its bids.

The command is /course/cs1951k/pub/2020/SpectrumAuction/test. It should be run from your project’s
root directory, and it runs 5 iterations of the game, and should take about one minute, or less (but it may
take a bit longer the first time, if Maven needs to download any packages).

If it succeeds, you’ll be able to see the results of your game against the bots. As such, feel free to also use
this script to debug your agent’s strategy.

Finally, run /course/cs1951k/pub/2020/SpectrumAuction/submit to submit your agent. We only store
your most recent handin, so if you wish to update your agent and submit a newer version at some later date,
just repeat these steps and your submission will be replaced.

5 Game API

5.1 MySpectrumAuctionAgent class

Your task is to fill in the following methods of the MySpectrumAuctionAgent class:

• getNationalBids(Map<String, Double> minBids): your strategy as the national bidder. This is
called each round of the ascending auction; you should return a Map<String, Double> representing
your bid for each item (represented as Strings) that you would like to bid on.

• getRegionalBids(Map<String, Double> minBids): your strategy as the national bidder. This is
called each round of the ascending auction; you should return a Map<String, Double> representing
your bid for each item (represented as Strings) that you would like to bid on.

As stated in Section 2.1, as the regional bidder, your bid bundle may only contain up to four goods. If
this rule is broken, your bid will be rejected by the server.

In both of the above methods, minBids represents the minimum allowable bid for each respective item,
not the current price. Specifically, minBids contains the current prices plus ε.

Furthermore, minBids will be filtered so that its keys correspond only with the items for which you are
eligible to bid, based on the diagram in Section 2.1. However, you are still responsible for trimming the size
of your bid bundle down to 4 or fewer as a regional bidder.

Be careful with this, because if any single one of your bids is too low, or on an ineligible good, your entire
bid bundle will be rejected. And due to the revealed preference rule, “sitting out” a round can have dire
consequences. We have provided a few useful tools for checking the validity of your bids; see Section 4.2.2.

In addition, we have provided the following utility methods that you may choose to fill in, if you find them
useful:

• onAuctionStart(): called at the beginning of each simulation of the Spectrum Auction. If you are
keeping any per-simulation data, this is where you would want to initialize or reset it.

• onAuctionEnd(allocations, payments, tradeHistory): at the end of an auction simulation, gives
you all of the information from the game, for you to use however you want. Unlike the tentative
allocations you have access to during the game, this contains information on all agents’ bidding history
and final allocations and payments. Entries in these variables that correspond with your agent in
particular will have a key or agent ID of this.getAgentBackend().getPublicID().



CS1951k, Spring 2020 Final Project: Spectrum Auction

5.2 Useful inherited methods

You may find the following methods useful in the Spectrum Auctions. These are all inherited by your agent.

• int getBidderPosition(): returns your bidder position, a number 1-7. This corresponds with the
bidder types in the diagram in Section 2.1.

• double getValuation(Collection<String> goods): returns your agent’s valuation for a bundle of
goods. For simplicity have also provided a version of this method which takes in a single String, so
you can easily determine your single-item valuations.

• boolean isEligible(String good): returns true if you are eligible to bid on the specified good;
returns false otherwise.

• boolean isValidBidBundle(Map<String, Double> myBids, Map<String, Double> minBids): re-
turns true if myBids is a valid bid bundle to submit to the server. Performs the following checks:

1. None of your bid amounts are null.

2. You are eligible to bid on all goods in myBids.

3. If you are a regional bidder, myBids has size 4 or less.

4. All bids in myBids are at least the minimum allowable bid, as indicated in minBids.

5. Your bid bundle satisfies the revealed preference rule (we check this by maintaining records of past
good prices, and of your past bids).

We highly recommend using this, as if your bid bundle passes this check, it is guaranteed to be accepted
by the server.

• Set<String> getTentativeAllocation(): gets the set of goods currently tentatively allocated to
your agent.

• double clipBid(String good, double bid, Map<String, Double> minBids): returns bid clipped
to be above the minimum allowable bid for good. In other words, returns max(bid, minBids[good]).

• int getCurrentRound(): returns a number indicating the current round number in the ascending
auctions. Is 0-indexed.

• Map<String, Double> getAllMinBids(): returns a map containing the minimum bids for every good,
not just those your agent is eligible for. This can be used to predict opponent strategies, but you should
use the minBids parameter to determine the set of goods you want to bid on, since if you submit a bid
with an ineligible good, it will be rejected.

6 Tier 1 Agent

We have provided you with access to our Tier 1 TA Bot implementation to test your own agent against. The
Tier 1 bot is implemented in the Tier1SpectrumAuctionAgent class, and does the following:

• As the national bidder, identifies the set of goods for which its single-good valuation is above the
minimum bid. Bids at exactly the minimum bid for each of those goods.

• As a regional bidder, identifies the set of goods for which its single-good valuation is above the minimum
bid, then restricts its interest to the four goods with the highest single-good valuations. Bids at exactly
the minimum bid for each of those goods.


	Introduction
	Game Description
	The GSVM-18 Model
	Simultaneous Multiple-Round Auctions (SMRA)
	The Revealed Preference Rule
	Game Specifics

	Strategy and Considerations
	Code: Installation, Testing, and Submission
	Installation
	Local Testing (and Training)
	Submission

	Game API
	MySpectrumAuctionAgent class
	Useful inherited methods

	Tier 1 Agent

