
CS1951k, Spring 2020 Final Project: AdX Game

Final Project: TAC AdX Game

1 Introduction

This final project option is derived from the TAC AdX Game, ultra-simplified versions of which we explored
in Labs 7 and 8.

2 Game Description

There are several differences between this version of the game and the earlier versions from the labs, which we
explain in-depth in this section. In short, the game will be extended to 10 days, campaigns will vary in length,
and most importantly, campaigns will be allocated endogenously via auctions rather than exogenously
(according to some distribution), so that one agent may seek to fulfill multiple campaigns simultaneously.

2.1 Advertising Campaigns and Impression Opportunities

Your agent’s main task in this game is to bid on (and hopefully win) advertising campaigns, based on
which it will again bid on (and hopefully win) impression opportunities, namely opportunities to exhibit
ads to Internet users as they browse the web.

Each day of the simulation, a random number of Internet users browse the web. These users hail from
multiple market segments, of which there are a total of 26, corresponding to combinations of {Male, Female}
x {HighIncome, LowIncome} x {Old, Young}. A market segment might target only one of these attributes
(for example, only Female) or two (Female_Young) or three (Female_Old_HighIncome). Users’ market
segments drawn from the distribution described in Appendix A.

For each user, a second-price sealed-bid auction is run to determine which agent to allocate that user’s
advertising space to, and at what price. Ties are broken randomly, so if there are two winning bidders in a
market segment, each will be allocated (about) half the users in that segment at the price they bid.

Ad networks are motivated to participate in these auctions by their desire to fulfill advertising campaigns.
A campaign is a contract of the form, “The ad network will show some number of ads to users in some
demographic. In return for these impression opportunities, the advertiser agrees to pay the ad network said
budget.” More specifically, each campaign is characterized by:

• A market segment: a demographic(s) to be targeted.

• A reach: the number of ads to be shown to users in the relevant market segment.

• A budget: the amount of money the advertiser will pay if this contract is fulfilled.

• A start day and an end day: the time during which the campaign is active. This range is inclusive; you
will have the opportunity to bid on a campaign on its start day, its end day, and every day in-between.

Here is an example of a campaign:
[Segment = Female_Old, Reach = 500, Budget = $40.0, Start_Day = 4, End_Day = 6]

To fulfill this campaign, your agent must show at least 500 advertisements to older women between days 4
and 6. If successful, it will earn $40. To show an advertisement to a user, you must win the auction for that
user. (Yes, we, as Internet users, are regularly auctioned off!) But note that winning an auction for a user
who does not match a campaign’s market segment does not count toward fulfilling that campaign.

https://sites.google.com/site/gameadx/
http://cs.brown.edu/courses/cs1951k/labs/2020/lab07/Lab07_Handout.pdf
http://cs.brown.edu/courses/cs1951k/labs/2020/lab08/Lab08_Handout.pdf

CS1951k, Spring 2020 Final Project: AdX Game

2.2 Ad Auctions: Bids and Spending Limits

Unlike the sealed-bid auctions we have studied in class, which are one-shot auctions, the auctions in this
game are repeated, as users arrive repeatedly. However, agents can only bid in these auctions once!—before
their simulation begins. Consequently, agents must reason in advance about how events might unfold over
the course of the day, and perhaps make contingency plans. The AdX game provides a mechanism for making
a contingency plan in the form of spending limits. These limits are upper bounds on the amount an agent
is willing to spend in either a specific market segment, or in total on a campaign, meaning overall, across all
market segment associated with that campaign.

If your agent has a campaign whose market segment is very specific (e.g., Female_Old_HighIncome), then
it won’t really have a choice about which users to bid on; it has to bid for users in precisely that market
segment, or it cannot earn a positive profit. However, if its market segment is less specific (e.g., Female), it
can bid different amounts in the Female_Old and Female_Young markets, for example, based on how much
competition it thinks there will be in each. Keep in mind, though, that the order in which users arrive is
random. So if it bids more on Female_Old than Female_Young, but then if all Female_Old users arrive
before any Female_Young, it may end up spending its entire budget for that campaign on Female_Old users.
For this reason, when bidding on a market segment, your agent might want to specify a spending limit each
market segment.

An agent can also specify an overall campaign spending limit to ensure that it does not spend more than
some pre-specified total across all market segments associated with a campaign. In sum, the key decisions
an agent must make in the ad auctions are what bids to place on what market segments, and what spending
limits should accompany those bids.

2.3 Effective Reach and Quality Score

At the end of each day, after all of the users have browsed the web and all of the ad auctions have been
run, the server will calculate the effective reach of all the agents for each of their active campaigns. This
value captures how much of a campaign has been fulfilled via a sigmoidal function that relates the number
of matching impressions won to the campaign’s total reach.

Effective reach is used to calculate an agent’s immediate profit on a campaign. Given a campaign C with
budget B, cost K, and effective reach ρ(C), profit is calculated as ρ(C) · B − K. Thus, achieving a high
effective reach, in addition to keeping costs low, is key to maximizing profits.

The specific function for the effective reach of a campaign C is given by:

ρ(C) =
2

a

(
arctan

(
a
(x
R

)
− b

)
− arctan(−b)

)
,

where a = 4.08577, b = 3.08577, x is the amount of impressions achieved, and R is your campaign’s reach.

The following plot depicts the effective reach function ρ(C) of a campaign with reach of R = 1000 and x
impressions achieved. Note that ρ(0) = 0, ρ(R) = 1.0, and limx→∞ ρ(C) = 1.38442. The plot shows that the
value of obtaining the first few impressions on the road to fulfilling a campaign is relatively low, compared
to the value of obtaining the middle and final impressions.

Effective reach is also used to calculate quality score, which is a measure of an agent’s reputation (used in
the campaign auctions), and hence impacts its long-term profits. Quality score is initialized to 1, and then
updated at the end of each day as a moving average of the average effective reach, say ρ̄, of all campaigns
that end on that day. More specifically, an agent’s quality score is iteratively updated as follows:

Qafter = (1− α)Qbefore + αρ̄.

Here, α controls how quickly the quality score changes with each day’s effective reach.

CS1951k, Spring 2020 Final Project: AdX Game

2.4 Campaign Auctions

On the first day of the game, your agent will be assigned one campaign at random. Then, on each subsequent
day, multiple (randomly-generated) campaigns will be put up for auction. Campaign auctions are conducted
as second-price reverse auctions. As opposed to a traditional auction where the good goes to the
highest bidder, in a reverse auction, the contract goes to the lowest bidder. Reverse auctions are common in
procurement. Think of the “bids” as “budgets” for the contract; the lowest bidder is the one who is willing
to take on the contract given the lowest budget, which in AdX means at the lowest cost to the ad agency.

Your agent should submit bids for each campaign it is interested in. These bids, for a campaign with reach
R, must fall within the range [0.1R,R].1 The bids are then divided by the agents’ respective quality scores to
arrive at effective bids, before they are entered into the auction. For example, for a campaign with reach
100, if two agents bid at the bottom of the acceptable range (i.e., 10), and one’s a quality score is 0.9, and
the other’s is 1.1, then their effective bids are 10/0.9 > 10/1.1, respectively, so the winner is the agent with the
higher quality score. The budget is then set to (10/0.9)(1.1); in other words, the second-lowest budget times
the winning agent’s quality score. If there is only one bidder, say A, in the auction, A wins the campaign
with a (maximum) budget of (R/Qlow)QA, where Qlow is the average quality score among the three agents
with the lowest quality scores on that day, and QA is bidder A’s quality score.

2.5 Scores

At the end of each simulation, the server will compute the profit earned by each agent/ad network. The
agent with the highest total profit wins. Because of the randomness inherent in the game, it will be simulated
repeatedly, and scores averaged over multiple simulations, to determine an overall winner.

2.6 Putting It All Together

All in all, here is a summary of the AdX game:

2.7 Game Specifics

• The game will last for 10 days.

• The quality score adjustment rate α will be 0.5.

1The non-zero lower bound on bids is intended to avoid bidding wars, where all agents’ effective bids are zero.

CS1951k, Spring 2020 Final Project: AdX Game

Algorithm 1 Run the n-day AdX game
Give each agent an initial campaign
Set each agent’s quality score to 1

for each day 1 . . . n do
List m new campaigns for auction
for each agent a do

Solicit bids for the campaigns which are up for auction
Solicit bids on market segments for a’s currently active campaigns

end for
Simulate users, run ad auctions, allocate users, calculate costs
for each campaign that ends today do

Compute the relevant agent’s effective reach
Compute that agent’s profit (effective reach less cost)

end for
Run campaign auctions, allocate the new campaigns
Update agents’ quality scores

end for
The agent with the highest total profit wins

• Initial campaigns will be assigned uniformly at random.

• Each day, there will be 5 new campaigns up for auction, also chosen uniformly at random.

– When the ad agency draws these new campaigns, they remove all campaigns that end after day
10. So, towards the end of the game (specifically, on days 9 and 10), there is a (good) chance that
there will be fewer than 5 new campaigns.

• The game will consist of 10 agents, so your agent will have 9 opponents.

The reach and start and end days of campaigns are drawn from distributions (see Appendix A). A campaign’s
budget (i.e., potential revenue for winning impressions) is set during a campaign auction (see Section 2.4).
TAC AdX is a game of incomplete information, as each agent knows (with certainty) the budgets of its own
campaigns only, not those of its competitors.

3 Strategy and Considerations

This is a very complex game and requires several strategic considerations beyond what was in play for Labs
7 and 8.

First, your agent can have multiple active campaigns at once, and via its bids in campaign auctions, has
some control over which campaigns it is (or at least hopes to be) allocated. If your agent already owns a
campaign for MALE_YOUNG, should it bid low for a campaign for MALE_OLD, so as to not compete too heavily
with itself for MALE users? Or should it try to corner the market?

Second, the reverse auction mechanism, and how it determines a campaign’s budget, introduces some inter-
esting considerations. How low is your agent willing to bid? If it bids too low, it may end up stuck with a low
budget, limiting your agent’s profits. This is exacerbated by the fact that the first part of the effective-reach
curve is essentially flat—profits don’t pick up until about half of a campaign’s reach is achieved. On the
other hand, if your agent bids too high, it may have trouble winning any campaigns in the first place, and it
cannot profit at all without any campaigns.

Third, if your agent wins two campaigns with overlapping market segments, which should it prioritize? Should
it place higher bids for the campaign that ends sooner, since it has less time to fulfill that campaign? Or

CS1951k, Spring 2020 Final Project: AdX Game

should it pay equal mind to the campaign that ends later, as fulfilling that campaign early would allow it to
focus on other overlapping campaigns in the future? Perhaps it can balance its interests by setting precise
spending limits based on how much of each campaign its already fulfilled?

If your agent procures only a small percentage of a campaign’s reach, then its effective reach for that campaign
will be low, which means your agent’s profit on that campaign will be low, since the lower part of the effective
reach curve is basically flat. But worse still, its quality score will decrease, which means that all else being
equal, it must bid lower to win campaign auctions, so it will have to settle for lower budgets on its future
campaigns. In short, your agent must choose wisely when deciding how to bid on campaigns, because it
cannot safely ignore any of its active campaigns. Once it wins a campaign, it is stuck with it.

In addition to these considerations, a successful AdX agent strategy will comprise many others. We suggest
building a theoretical model of the game (consider starting your writeup!) before attempting to implement
an agent strategy. This model will help you envision even more of the many important factors that your
agent’s strategy should try to take into account.

4 Game API

4.1 MyNDaysNCampaignsAgent class

Your task is to fill in the following methods of the MyNDaysNCampaignsAgent class:

• getAdBids(): returns a Set<NDaysAdBidBundle> representing the agent’s bid bundles on the current
day. A bid bundle includes a campaign and a spending limit, as well as bids in market segments
corresponding to the campaign (and optional spending limits in those market segments as well).

Note that these bids are daily bids; they only last for one day. If an agent has a multiple-day campaign,
and it places a bid on the first day of its campaign, it must to place another bid on the second day, if it
would like to continue bidding. You should feel free to take advantage of this flexibility; it allows your
agent’s strategy to adjust to the events of yesterday when planning for tomorrow.

• getCampaignBids(Set<Campaign> campaignsForAuction): returns a Map<Campaign, Double> rep-
resenting the agent’s bid on each element of campaignsForAuction on which it is bidding.

The server, in playing the role of an ad exchange, calls these two methods every day of the game. Whatever
your agent returns is then used by the server when it runs the auctions.

In addition, we have provided the following utility method, which you may fill in, should you find it useful:

• onNewGame(): called at the beginning of each simulation of the AdX Game. If you are maintaining
any per-game data, this is where you would want to initialize or reset it. For example, if you are
using a pre-trained agent, this is where you would read in your saved data. Or, if you are keeping
more fine-grained data than that provided by the inherited methods (for example, a map from market
segment to the amount of campaigns you have covering it), you would clear it here so that it is empty
going into the next game.

Finally, below is a list of methods inherited by MyNDaysNCampaignsAgent which you may also find useful:

• int getCurrentDay(): gets the current day within the game, a number between 1 and 10.

• Set<Campaign> getActiveCampaigns(): gets the agent’s active campaigns. This set should corre-
spond to the campaigns the agent bids on in getAdBids() (assuming it doesn’t ignore any). Only the
campaigns owned by your agent will be in this set.

CS1951k, Spring 2020 Final Project: AdX Game

• double getQualityScore(): gets the agent’s current quality score.

• int getCumulativeReach(Campaign c): gets the number of impressions that the agent has fulfilled
for campaign c so far. This information is particularly useful for multi-day campaigns; the agent can
use it to set goals and spending limits as a campaign proceeds.

• double getCumulativeCost(Campaign c): gets the amount the agent has spent on impressions in the
ad auctions for campaign c so far. This information is particularly useful for multi-day campaigns; the
agent can use it to set goals and spending limits as a campaign proceeds.

• double getCumulativeProfit(): gets the agent’s cumulative profit from the start of the game up to
the current day.

• double effectiveReach(int x, int R): the effective reach function.

• boolean isValidCampaignBid(Campaign c, double bid): checks whether bid is in the range
[0.1 * c.getReach(), c.getReach()]. We recommend using this function to verify that your agent’s
bids are valid before submitting them, as invalid bids are rejected by the server.

• double clipCampaignBid(Campaign c, double bid): returns bid, clipped into the range of valid
bids on campaign c. In other words, returns max(0.1 * c.getReach(), min(c.getReach(), bid)).

• double effectiveCampaignBid(double bid): returns the effective bid that would be derived from
bidding bid in a campaign auction. In other words, returns bid / this.getQualityScore().

4.2 The MarketSegment Enum

MarketSegment is implemented as an Enum, so to iterate over all of them, you can do something like:

for (MarketSegment m : MarketSegment.values()) { ... }

The static function MarketSegment.marketSegmentSubset(MarketSegment m1, MarketSegment m2) re-
turns a boolean indicating whether m2 is a subset of m1, so that users in market segment m2 are also in
market segment m1. (N.B. market segments are subsets of themselves.)

4.3 Campaign objects

In both the ad and campaign auctions, you will be working with Campaign objects. They provide the following
methods:

• int getID()

• int getStartDay()

• int getEndDay()

• MarketSegment getMarketSegment()

• int getReach()

• double getBudget()

CS1951k, Spring 2020 Final Project: AdX Game

4.4 NDaysAdBidBundle and SimpleBidEntry objects

To submit ad bids, you should construct an Set<NDaysAdBidBundle>.

Each NDaysAdBidBundle represents an agent’s bids on a single campaign, and an overall campaign spending
limit. NDaysAdBidBundle objects are constructed as follows:

NDaysAdBidBundle bundle = new NDaysAdBidBundle(
int campaignId,
double limit,
Set<SimpleBidEntry> simpleBidEntries

);

The limit field sets a spending limit campaign-wide; that is, it represents a daily spending limit for the
campaign. So even if an agent’s market-segment-specific limits (described below) total above this limit, its
spending on this campaign will still be capped at this limit.

The simpleBidEntries field allows an agent to set daily bids and spending limits specific to market segments
within a campaign. SimpleBidEntry objects are constructed as follows:

SimpleBidEntry bidEntry = new SimpleBidEntry(
MarketSegment marketSegment,
double bid,
double limit

);

So, a simpleBidEntries set should contain one of these objects for each market segment on which the agent
is bidding. Likewise, a NDaysAdBidBundle set should contain one of these objects for each campaign on
which the agent is bidding.

5 Tier 1 Agent

We have provided you with access to our Tier 1 TA bot implementation to test your own agent against. This
bot is implemented in the Tier1NDaysNCampaignsAgent class, and does the following:

• In all campaign auctions, it bids a random number within the range of valid bids.

• In ad auctions, for each campaign with budget B, reach R, so-far cumulative reach of Ra, and so-far
cumulative cost of Ka, it bids max(0.1, (B −Ka)/(R−Ra)) with a spending limit of max(1, B −Ka).

6 Code: Installation, Testing, and Submission

Please read the following instructions carefully, as it is essential that your code runs successfully with our
game server, and that your handin is correctly formatted.

6.1 Installation

Download the stencil code from the course website. Just as in Labs 7 and 8, the stencil code is an entire Java
project, complete with a package structure and a file called pom.xml, along with a few python scripts.

CS1951k, Spring 2020 Final Project: AdX Game

We will be using the Apache Maven build system for this project. Put simply, Maven allows us to export
our Java projects into runnable JAR files in a standardized fashion (as defined in pom.xml, which acts as a
configuration file for Maven).

If you do not already have Maven installed, please download and install it. If you are working on a department
machine or via FastX, you will already have Maven installed, which you can verify by running mvn -version.

If you have not installed Eclipse on your machine, you should download that as well.

Once you have installed Maven and unzipped the stencil code, open Eclipse and select File → Import.

Then, select Maven → Existing Maven Project.

https://maven.apache.org/
https://maven.apache.org/download.cgi
https://maven.apache.org/install.html
https://www.eclipse.org/downloads/

CS1951k, Spring 2020 Final Project: AdX Game

Finally, navigate to, and select, the stencil project and make sure pom.xml is selected. Select Finish.

This will create an Eclipse project for this lab. Your task resides in the file MyNDaysNCampaignsAgent.java
in the package agent under src/main/java. Feel free to create and use any other packages, classes, etc.
within the project, as long as you do not change the location or name of MyNDaysNCampaignsAgent.java.

6.2 Local Testing (and Training)

If you would like to test out your agent against other agents, run your MyNDaysNCampaignsAgent file directly
in Eclipse. The main method instantiates 10 agents, including your own, and runs an offline simulation (in
order to not have to deal with server delays and wait times). This simulation consists of 500 iterations of the
AdX game.

As with any programming project, you should test your programs extensively. In addition to the usual unit
tests, etc., you should play test games against other agents. You can test against 9 copies of your own agent,
9 copies of our Tier 1 TA Agent (see Section 5), or any combination thereof. You can also create your own
dummy agents to test your own agent against; just create a class extending NDaysNCampaignsAgent. To set
the agents to test against, you should edit the agent types in src/main/resources/offline_test_config.json.

CS1951k, Spring 2020 Final Project: AdX Game

If you design a strategy that involves training, you can submit a pre-trained agent. Then, to use a pre-
trained agent that reads its input from a file, please place the file in src/main/resources and read it using
getResourceAsStream(); see this guide. By including your file in the resource folder, you will ensure that
it is included in the executable JAR we use to run your submission; file-reading is thus independent of the
specifics of the filesystem.

6.3 Submission

You will be submitting your code via the course handin script.

First, if you are not already working on a department machine or via FastX, you will need to transfer your
files to the department filesystem. We have provided a utility to do this upload for you. You are free to
transfer the files any way you’d like—this utility is just an attempt to simply your life.2

To use this utility, from your project’s root directory, run python3 upload.py.3 It will transfer your files to
/course/cs1951k/student/<cslogin>/AdXFinal. (We have created student directories for you so that you
don’t need to use up tons of space in your personal filesystem.)

Next, SSH to Brown, and navigate to your project’s root directory (if you used the upload script,
/course/cs1951k/student/<cslogin>/AdXFinal).

To make sure that your agent will work as intended when being run the way we run handins, we have provided
a script that launches the server, along with your agent and 9 opponent bots. You should run this script to
make sure your agent connects to the server properly, doesn’t crash, and properly submits its bids.

The command is /course/cs1951k/pub/2020/AdXFinal/test. It should be run from your project’s root
directory, and it runs 5 iterations of the game, and should take about one minute, or less (but it may take a
bit longer the first time, if Maven needs to download any packages).

If it succeeds, you’ll be able to see the results of your game against the bots. As such, feel free to also use
this script to debug your agent’s strategy.

Finally, run /course/cs1951k/pub/2020/AdXFinal/submit to submit your agent. We only store your most
recent handin, so if you wish to update your agent and submit a newer version at some later date, just repeat
these steps and your submission will be replaced.

A Campaign and User Distributions

Each campaign lasts between 1 and 3 days (chosen uniformly at random), and targets one of 20 possible
market segments (a combination of at least two attributes). A campaign’s reach is given by the average
number of users in the selected segment (listed in the tables below), scaled by the campaign’s duration in
days, times a random reach factor, selected from the set {δ1, δ2, δ3}, where 0 ≤ δi ≤ 1, for all i. The exact
values of these factors are tailored to the number of agents in the game. In particular, for the ten-agent
games we plan to run, we will use δ1 = 0.3, δ2 = 0.5, and δ3 = 0.7.

2Well, not really. Just this very very small part of it.
3To run this script, you will need Python 3. You may also need to install it, as well as the pysftp library, via pip.

https://mkyong.com/java/java-getresourceasstream-in-static-method/

CS1951k, Spring 2020 Final Project: AdX Game

User Frequencies

Segment Average Number of Users
Male_Young_LowIncome 1836
Male_Young_HighIncome 517
Male_Old_LowIncome 1795
Male_Old_HighIncome 808
Female_Young_LowIncome 1980
Female_Young_HighIncome 256
Female_Old_LowIncome 2401
Female_Old_HighIncome 407
Total 10000

User Frequencies: An Alternative View

Young Old Total
Male 2353 2603 4956
Female 2236 2808 5044
Total 4589 5411 10000

Low Income High Income Total
Male 3631 1325 4956
Female 4381 663 5044
Total 8012 1988 10000

Young Old Total
Low Income 3816 4196 8012
High Income 773 1215 1988
Total 4589 5411 10000

	Introduction
	Game Description
	Advertising Campaigns and Impression Opportunities
	Ad Auctions: Bids and Spending Limits
	Effective Reach and Quality Score
	Campaign Auctions
	Scores
	Putting It All Together
	Game Specifics

	Strategy and Considerations
	Game API
	MyNDaysNCampaignsAgent class
	The MarketSegment Enum
	Campaign objects
	NDaysAdBidBundle and SimpleBidEntry objects

	Tier 1 Agent
	Code: Installation, Testing, and Submission
	Installation
	Local Testing (and Training)
	Submission

	Campaign and User Distributions

