CS195-7: Introduction to Cryptography DUE: September 17, 2002

Solution Set 2

Instructor: Anna Lysyanskaya

In lecture, we defined one-way permutations and gave an application for password au-
thentication. In this problem set, we will define a weaker notion, namely that of one-way
functions and explore applications.

A one-way function is a function that is easy to compute, but hard to invert. (So a
one-way permutation is a one-way function that also happens to be a permutation.) More
formally:

Definition: An efficiently computable function f : {0,1}* — {0,1}* is a one-way function
if for all probabilistic polynomial-time families of adversaries { A}, there exists a negligible
function v(k) such that

Prlz « {0,1}%;y = f(z);2' + Ax(y) : f(2) = y] = v(k)

Problem 1

The definition above captures the intuition that a one-way function should be easy to
compute, but hard to invert. But there may be many ways to define the same concept.

Are hard-to-invert functions (defined below in Definition 1a) equivalent to one-way func-
tions? What about hard-to-find-preimage functions (defined below in Definition 1b)?
Definition 1a: An efficiently computable function f : {0,1}* — {0,1}* is a hard-to-invert
function if for all probabilistic polynomial-time families of adversaries { Ay}, there exists a
negligible function v(k) such that

Prz + {0,1}F;y = f(z);2’ + Ak(y) : 2’ = 3] = v(k)

Definition 1b: An efficiently computable function f : {0,1}* — {0,1}* is a hard-to-find-
preimage function if for all probabilistic polynomial-time families of adversaries { Ay}, there
exists a negligible function v (k) such that

Prly « {0,1}*;2 « Ag(y) : f(z) =y] = v(k)
Solution:

Neither of the two definitions are equivalent to one-way functions.

For the first definition, consider the following function: f(z) = 01l This function
satisfies Definition la: any k-bit string x satisfies that f(x) = 0¥, and so on input 0%, it is
hard to guess which input string it was. However, f is not a one-way function, since for any
k-bit z, ' = 0 satisfies f(z) = f(z').

For the second definition, consider function f such that f(z) = z o 0/%/. This is not a
one-way function since x can easily be computed from f(z). (And for the same reason, it
is not a hard-to-invert function either.) Yet, if y is a k-bit string chosen at random, most

S2-1

likely no z exists that satisfies f(z) = y: it will exist only if k is even, and the last k/2 bits
of y are all zeroes, which happens with probability 27%/2 for a randomly chosen y.

Problem 2

Assume that f is a one-way function. Let “o” denote concatenation. If z is a binary string,
let |z| denote its length. For each of the functions below, either prove that it is a one-way
function (by reduction that, in case g is not one-way, will give an algorithm that inverts f),
or give an attack.

(a) A function g that ignores half of its input: g(z1 o x2) = f(x1), where 21 o z2 is a 2k
or 2k — 1-bit input string, and x; denotes the first k bits of it.

Solution:

Suppose that an adversary {Ax} inverts g with non-negligible probability. Then let us
construct an algorithm {Bj} that will invert f. On input y = f(z) (where z is k bits long),
our algorithm By must compute some z’ such that f(z') = y.

By, works as follows: on input y, run A;. With non-negligible probability, Aj outputs
some z and zf, such that y = g(z} oz}) = f(z}). Our algorithm By, will then simply output
the value z].

(b) A function g that appends a string of zeroes to its output: g(z) = f(z) 0 0 /@I

Solution:

Suppose that an adversary {Ay} inverts g with non-negligible probability. Then let us
construct an algorithm { By} that will invert f. On input y = f(z) (where z is k bits long),
our algorithm By must compute some z’ such that f(z') = y.

By, works as follows: run Ay on input y o 0%/, With non-negligible probability, Ay
outputs some z’ such that y o 0¥ = g(2') = f(a') o 0/@)l. Our algorithm By will then
simply output the value z'.

(c) A function g that is equivalent to f on all of its input strings = except those that
end in |z|/2 zeroes:

glz) = 0% ifz=yo0/2

f(xz) otherwise

Solution:

This is a one-way function, by the following reduction: suppose we have an algorithm
{A} that computes g~!(z), where z = g(z) for a randomly chosen x, non-negligibly often,
that is to say with probability e(|z|).

Written in our notation:

Prlz < {0,1}%;2 = g(z); 2" + A(z) : g(z') = 2] = €(|z])

S2-2

Let us try to use Ay to invert f(z). Note that there are two cases when A succeeds in
inverting g: the case that A succeeds and z does not end in |z|/2 zeroes, and the case when
A succeeds and x does end in that many zeroes. Note that the probability of the second
case is at most 27121/2, because z is chosen uniformly at random to begin with.

Therefore:

Prfa {0,1}%;2 = gla)ia’ « Ax(2) : g(a') =2 Az £ y 00 < e(k) — 2742

But whenever = does not end in |z|/2 zeroes, f(z) = g(x), and so

Pr[z + {0,1}%;2 = f(2);2' « Ap(2) : f(a') = 2] < e(k) — 27%/2

and e(k) — 27%/2 is non-negligible, because ¢ is non-negligible while 27¥/2 is negligible.

Problem 3

(This is what used to be Problem 2 on the last problem set. You may need to consult Dana
Angluin’s notes posted on the course webpage.)

Suppose p is a prime and g is a generator modulo p.

Experiment 1: Pick z at random in {1,...,p — 1}. Output ¢g*.

Experiment 2: Pick z,y at random in {1,...,p — 1}. Output ¢g*¥.

Prove or disprove: Experiment 1 and Experiment 2 produce identically distributed
outputs.

Solution:

The two experiments do not produce the same outcome. As a counter-example, consider
the groups Z,.

52-3

