CS195-7: Introduction to Cryptography DUE: October 31, 2002

Problem Set 5-6

Instructor: Anna Lysyanskaya

Problem 1: Indistinguishability and the hybrid argument

There are five parts to this problem. There are also a few exercises in parentheses. You do
not have to turn in the answers to the exercises, but it is a good idea to do them nevertheless.

Recall the notion of indistinguishability. We say that two polynomial-time samplable
distributions, .A and B are indistinguishable if for all probabilistic polynomial-time adver-
saries {Ay} there exists a negligible function v(k) such that

Prlzg < A(1%);21 « B(1%);b < {0,1}; 8 < Ag(xp) : b=b'] = 1/2 + v(k)

Similarly, we can define indistinguishability if A and B are families of distributions
indexed by some public parameter generated by the key generation procedure G. In that
case (G, A, B) is a family of indistinguishable distributions if for all probabilistic polynomial-
time adversaries { Ay} there exists a negligible function v (k) such that

Pr[PK + G(1%); 20 + A(PK);z; < B(PK);b + {0,1};b' + Ap(PK,xz3) : b=b"] = 1/24v(k)

Notation: Let A ~ B denote that the distributions (or families of distributions) A and
B are indistinguishable. (Exercise: why is it that A = B < B~ A?)

(a) Let (G, A, B) be families of distributions. Prove that the following statements are
equivalent:

1. A= B.
2. For all probabilistic poly-time algorithms { Ay}, there exists a negligible function
v(k) such that |pf4Ak}(k) —péA’“}(k)\ = v(k), where by px(k), X = A,B, we

mean:
px(k) = Pr[PK + G(1¥);2 « X (PK);b' < Ax(PK,z) : b =0

In other words, two (families of) distributions are indistinguishable iff no matter what
algorithm Aj you run on z drawn from one of the distributions, it will, with all but
negligible probability, behave the same as if  was drawn from the other distribution.

In lecture, we have seen the so-called hybrid argument for proving that two distribu-
tions A and B are computationally indistinguishable. The main tool that we used was the
following lemma:
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Lemma 1 For all polynomial-time samplable (families of) distributions A and B, if there
exists a polynomial-time samplable (family of) distribution(s) C such that A ~ C and B~ C,
then A ~ B.

Proof: Let {Dy} be an adversary. Using part (a), it is sufficient to show that there exists a
negligible function v(k) such that |p;{4Dk}(k) —pEDk}(kﬂ = v(k). Since A =~ C, and C =~ B, we
know that there exist negligible functions v; (k) and (k) such that |pf4D’“} - péDk}| =uv1(k)
and \péDk} —péD’“}| = vy(k). Then

D D D D D D
|pf4 k}_pé k}|: {Dx} {Dr} _ {Dx} {Dr}

D D D D
Pl —pE 0l —p 7 < Il —p P pE ) —p 7| = v (k)4 (h)
and we are done since the sum of two negligible functions is negligible.

(b) The claim proved below is false. (Exercise: why?) However, below is a proof of this
claim. Find the error in this proof.

Claim: Let A(1%) be the uniform distribution on integers in the interval [1,2*]. Let
B(1¥) be the uniform distribution on integers in the interval [2¥ + 1,2%*1]. Then
A= B.

Proof: For i > 0, let C;(1¥) be the uniform distribution on the integers in the interval
[i,2% +4]. Tt is clear that Cy = A, and Cyr = B. Also, note that for all i, C; ~ C;41.
(Exercise: why?)

Let us prove that for all j, C; = Cjy;, by induction on j. The base case, j = 1, is
given. The inductive step: Suppose C; = C;yj_1. We also know that Cj ;1 = Ci;.
Therefore, the conditions of Lemma 1 are satisfied, and C; =~ C;;.

Therefore, in particular, A = Cy = Cor = B.

Part (b) shows that care must be taken when applying Lemma 1 to proving indistin-
guishability of distributions. Let us develop some notation that will allow us to be more
careful. Instead of simply talking about two distributions as being indistinguishable, let us
specify exactly what the maximum advantage of a distinguisher would be in telling the two
distributions apart, as a function of the running time of this distinguisher.

Notation: Let A and B be efficiently samplable families of distributions with key generation
algorithm G. Let the notation “A = B with advantage at most €(-)” mean that for all
probabilistic polynomial-time adversaries { A} |pf4Ak}(k) — p{BA’”}(k)| < e(k).

The following lemma, is a more precise version of Lemma 1:

Lemma 2 For all polynomial-time samplable (families of) distributions .4 and B, if there
exists a polynomial-time samplable (family of) distribution(s) C such that A ~ C with
advantage at most €1(k) and B =~ C with advantage at most e3(k), then A =~ B with
advantage at most €1 (k) + ez (k).

Proof idea: Same as the proof of Lemma 1.
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Further, we can now consider the meat of the hybrid argument:

Lemma 3 For any integer i > 0, let A; be a family of polynomial-time samplable
distributions. Suppose that for all 1 < i < n, A4; 1 = A; with advantage at most ¢;. Then
Ao ~ A, with advantage at most ) 7" | €.

(¢) Prove Lemma 3.

Lemma 4 is the converse of Lemma 3. Namely, it says that if we can distinguish between
Ag and A,,, then we can distinguish between A;_1 and A; for some 1.

Lemma 4 Let A and B be polynomial-time samplable families of distributions. with
setup algorithm G. Let a distinguisher {Dy} such that p;Dk} - péD’“} > e(k) be given. Let
n be any integer. Let A9 = A, A, = B, and A;, 1 <i < n, be any families of distributions
with setup algorithm G. Then for some 1 < i < n, p;{ffl} - pigk} > e(k)/n.

Proof: Simple averaging argument that we saw in class.
Finally, Lemma 5 states that if we can distinguish between A and B using algorithm

{Dy} with advantage €, then for a random i, {Dy} is a good distinguisher with good
probability.

Lemma 5 Let A; be as in Lemma 4. Let P be a random variable, as follows: P =
p&?k} — pfffl} for 1 <4 < n chosen uniformly at random. Then E[P] > €(k)/n.

(d) Prove Lemma 5.

(e) Apply the Markov inequality to derive a lower bound on the probability that, for a
randomly chosen ¢, the distinguisher will have advantage at least ¢/2n. Make your
bound as tight as you can.

Problem 2: RM-security

Let M be a set of messages. This set may consist of infinitely many messages, for example,
of all binary strings. Let M, denote the set of all £-bit strings in M. le.,

Me={m | m e M,|m| =1}

Recall GM security, where the adversary chooses two messages of the same length whose
encryptions he intends to tell apart. More precisely:

Definition (GM-Security) A cryptosystem (G, E, D) on a set of messages M is GM-
secure if
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V{Ar} v(k) € neg s.t.
Pr[ (PK,SK) + G(1%); (a,mg,m1) + Ay(PK);
¢y < E(PK,myp);c1 < E(PK,m);
b+ {0,1};b" + Ag(a, ) : b =0 <1/2 +v(k)

Consider the following definition of security, which we call random message security
(RM security). Here, the adversary chooses just one message. The adversary’s goal is to
tell an encryption of this message apart from an encryption of a random message of the
same length. A cryptosystem is RM-secure if any polynomial-time adversary fails. More
precisely:

Definition (RM-Security) A cryptosystem (G, E, D) on a set of messages M is random-
message (RM) secure if

V{Ax} Jv(k) € neg s.t.
Pr[  (PK,SK) + G(1%); (a,m) + Ax(PK);
T+ My ;o < E(PK,m);c1 < E(PK,7);
b+ {0,1}b + Ag(a,cp) : b =0 <1/2+v(k)

Prove or disprove that for all sets of messages M, RM security is equivalent to GM
security. (The hybrid argument from Problem 1 may be relevant.)

Problem 3: Pseudorandomness vs. unpredictability

In lecture, we assumed that if a bit is hardcore, i.e., hard to predict, then it is pseudo-
random, i.e., hard to distinguish from random. Here, we will prove it and further consider
preudorandomness vs. unpredictability.

(a) Prove that a bit is hard to predict if and only if it is pseudorandom. More formally: Let
{Dpk} be an efficiently samplable family of distributions with setup procedure G. Let
f(PK,z) be any Boolean function. (For example, {Dpg} can be the distribution of
GM ciphertexts for one bit, and f(PK,z) is the decryption of the ciphertext = under
public key PK. Or, {Dpgk} may be a family of one-way permutation, and f(PK,x)
may be its hardcore bit.) Prove that the following two conditions are equivalent:

Condition 1 (unpredictability): For all probabilistic polynomial-time adversaries { Ay},
there exists a negligible function v(k), such that

Pr[PK «+ G(1*);z < Dpx;
bV + Ag(PK,z) : f(PK,z)=10b]<1/2+v(k)

More generally, for any (not necessarily boolean) function f, let pp,q.(D) be the
probability of the most likely element of Dpr. Then f is unpredictable if for all
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probabilistic polynomial-time adversaries { A}, there exists a negligible function v (k),
such that

Pr[PK + G(1%);z « Dpg;
y' «+ Ar(PK,z) : f(PK,z)=1"]< pma(D)+ v(k)

Condition 2 (pseudorandomness): For all probabilistic polynomial-time adversaries
{Ag}, there exists a negligible function v(k), such that

PI[ ap < {Oal}a
PK «+ G(lk);x < Dpg;a1 = f(PK,x);
b(—{O,l};b’(—Ak(PK,.’B,ab) : b:bl]gl/2—|—lj(k)

For non-boolean f, the definition of pseudorandomness is essentially the same. Let
{Rj} denote some polynomial-time samplable family of distributions. For example,
{Ry} can be the uniform distribution on k-bit strings. Function f is pseudorandom
if there exists a polynomial-time samplable family of distributions { Ry} such that for
all probabilistic polynomial-time adversaries { Ay}, there exists a negligible function
v(k), such that

PI‘[ ag < Ry;
PK < G(1%);z < Dpg;a1 = f(PK,z);
b+ {0,1};b + Ap(PK,z,a) cb=0b]<1/2+v(k)

(b) Suppose that f(PK,z) is not a boolean function, but rather a function with the range

{0,1}*. Will f(PK,z) be unpredictable if it is pseudorandom? Will it be pseudoran-
dom if it is unpredictable? What if the range of the function is {0,1}'°¢#? (You don’t
have to write the proofs in detail for this part of the problem, it is sufficient to just
sketch them.)
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