CS195-7: Introduction to Cryptography

DUE: October 10, 2002

Midterm Exam

Instructor: Anna Lysyanskaya

Please note that you are not allowed to collaborate with others on this exam.

Problem 1: One-way functions and permutations

Let $f:\{0,1\}^*\mapsto\{0,1\}^*$ be a one-way function. Let $p:\{0,1\}^*\mapsto\{0,1\}^*$ be a one-way permutation.

For each of the suggested implications below, prove or disprove that they are valid. That is to say, if an implication is valid, give a reduction. If it is not valid, give an example of a one-way function f and a one-way permutation p for which the implication is false. You may assume existence of one-way functions permutations.

Problem 2 from Problem Set 2 may serve as a helpful hint for a couple of these problems. **Example.** Does it follow that f(x) is a permutation?

Solution. It does not. Let f'(x) be a one-way function. Let f(x) = g(x) where g(x) is as defined in Problem 2a of problem set 2. Then f(x) is a one-way function (that's what is shown in that problem) but it cannot be a permutation because it ignores half of its input bits.

- (a) Does it follow that g(x) = f(f(x)) is a one-way function?
- (b) Does it follow that g(x) = p(p(x)) is a one-way permutation?
- (c) Does it follow that $g(x) = f(x) \circ p(x)$ is a one-way function? (Recall that \circ denotes concatenation.)
 - (d) Does it follow that, on input p(x), one can efficiently compute f(x)?

Problem 2: The Blum-Rabin trapdoor permutation

Recall the definition of a family of trapdoor permutations. A trapdoor permutation family consists of algorithms $(G, M_{PK}, f_{PK}, f_{PK}^{-1})$. G generates a member of the family, that is to say, a public key PK that allows to efficiently evaluate the permutation f_{PK} , and the secret key SK that allows to efficiently invert f_{PK} . M_{PK} is the algorithm that efficiently samples the domain of the permutation f_{PK} .

For example, in RSA, the procedure G generates the modulus n=pq and the exponent e, and sets PK=(n,e) and SK=d, where $de\equiv 1 \mod \phi(n)$. Furthermore, $M_{(n,e)}=\mathbb{Z}_n^*$, $f_{(n,e)}(x)=x^e \mod n$, and $f_{(n,e)}^{-1}(y)=y^d \mod n$.

 $(G, M_{PK}, f_{PK}, f_{PK}^{-1})$ constitute a trapdoor permutation if f_{PK} is hard to invert. More formally, for all probabilistic polynomial-time adversaries $\{A_k\}$, there exists a negligible function $\nu(k)$ such that

$$\Pr[(PK, SK) \leftarrow G(1^k); y \leftarrow M_{PK}; x \leftarrow A_k(y) : f_{PK}(x) = y] = \nu(k)$$

Consider the following collection of algorithms:

Key generation The procedure $G(1^k)$ generates two k-bit primes, p and q, such that $p \equiv q \equiv 3 \mod 4$. It outputs PK = n = pq, and SK = (p,q). (Such a modulus n is called a $Blum\ integer$.)

Domain The domain M_n of the permutation f_n consists of all the quadratic residues modulo n. More formally,

$$M_n = \{x \mid x \in \mathbb{Z}_n^* \land \exists u \text{ such that } x \equiv u^2 \bmod n\}$$

To sample from the domain, pick $u \leftarrow \mathbb{Z}_n^*$, and output $x = u^2 \mod n$.

Computing the function The permutation f_n is squaring: $f_n(x) = x^2 \mod n$.

Inverting the function To compute $f_n^{-1}(y)$, one must compute the value $x \in M_n$ such that $x^2 = y \mod n$.

In this problem, you will prove that the algorithms given above constitute a family of trapdoor permutations.

- (a) Show that f_n is a permutation. (Hint: work modulo p and q first, and then combine using the Chinese remainder theorem.)
- (b) Suppose that p = 4m + 3 is a prime and that a is a quadratic residue modulo p. Prove that a^{m+1} is a square root of a modulo p.
- (c) Devise an efficient algorithm that, on input (p, q, y), computes $x = f_{pq}^{-1}(y)$, i.e., x such that $x^2 = y \mod n$, where n = pq is a Blum integer.
- (d) Devise an efficient algorithm that, on input (n, a, b), where $a, b \in \mathbb{Z}_n^*$, $a \neq \pm b \mod n$, and $a^2 \equiv b^2 \mod n$, outputs a non-trivial divisor of n.
- (e) Let us assume that factoring Blum integers is infeasible. More precisely, assume that for all probabilistic polynomial-time adversaries $\{A_k\}$, there exists a negligible function $\nu(k)$ such that

$$\Pr[(n,(p,q)) \leftarrow G(1^k); p \leftarrow A_k(n) \ : \ p \mid n \land 1$$

Show that under this assumption, it is infeasible to invert f_n . More precisely, show that for all probabilistic polynomial-time adversaries $\{A_k\}$, there exists a negligible funtion $\nu'(k)$ such that

$$\Pr[(n,(p,q)) \leftarrow G(1^k); y \leftarrow M_n; x \leftarrow A_k(n) : x^2 = y \mod n] = \nu'(k)$$

(This fact is due to Michael Rabin.)