CS195-7: Introduction to Cryptography DUE: October 10, 2002

Midterm Exam Solutions

Instructor: Anna Lysyanskaya

Problem 1: One-way functions and permutations

Let f : {0,1}* — {0,1}* be a one-way function. Let p : {0,1}* — {0,1}* be a one-way
permutation.

For each of the suggested implications below, prove or disprove that they are valid. That
is to say, if an implication is valid, give a reduction. If it is not valid, give an example of
a one-way function f and a one-way permutation p for which the implication is false. You
may assume existence of one-way functions permutations.

Problem 2 from Problem Set 2 may serve as a helpful hint for a couple of these problems.

Example. Does it follow that f(z) is a permutation?

Solution. It does not. Let f'(z) be a one-way function. Let f(z) = g(z) where g(z) is
as defined in Problem 2a of problem set 2. Then f(z) is a one-way function (that’s what is
shown in that problem) but it cannot be a permutation because it ignores half of its input
bits.

(a) Does it follow that g(z) = f(f(z)) is a one-way function?

Solution:

It does not follow. Let p(z) be a one-way permutation. Consider the function f(z):

p(z) 0 0171 otherwise

The function f(z) always puts a bunch of zeroes at the end of its output. If its input
happens to end with a bunch of zeroes, then it just ignores the input and outputs a string
of zeroes. Note that f(f(z)) = 0?2/ for all strings z. Therefore, inverting g(z) = f(f(z)) is
trivial.

However, note that f(z) is a one-way function. Suppose it is not, and there is an adver-
sary {A} that inverts it non-negligibly often. Then let us invert the one-way permutation
p. On input a random y, we must compute z such that y = p(x). First, note that with
high probability, z does not end in |z|/2 zeroes. Therefore, running Ay|(y o 01%) will non-
negligibly often produce the value z such that f(z) = p(z) o 0 = y 0 0, and therefore
p(z) =y.

(b) Does it follow that g(x) = p(p(z)) is a one-way permutation?

Solution:
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Yes, it follows. Suppose that we have an algorithm {A;} that computes g !(y) with
non-negligible probability e(k). Our goal is to build an algorithm {Bj} that computes
p~1(y) with probability e(k).

Let {By} be as follows: on input y, |y| = k, run Ag(p(y)). With probability e(k), obtain
z such that z = p(p(z)) = p(y). Since p is a permutation, p~' is well-defined, and so
y=p Yply)) =p (p(p(zx))) = p(z), and so z is what we are looking for.

(c) Does it follow that g(z) = f(z) o p(z) is a one-way function? (Recall that o denotes
concatenation.)

Solution:

No, it does not follow. Let p’(z) be a one-way permutation. Let p(z1 o xz2) = p'(z1) o 22,
and f(z1 o z2) = z1 o p'(z2), where by £ = z1 o z2 we denote that z; is the most significant
[|z|/2] bits of z, and zo is the remaining ||z|/2] bits. It is easy to see that both p and f
are one-way permutation. Yet it is easy to compute z from f(z) o p(x).

(d) Does it follow that, on input p(z), one can efficiently compute f(z)?

Solution:

No, it does not follow. Consider p and f as in part (¢). Then computing f(z) from p(z)
is equivalent to inverting p’. Suppose an adversary { A} who computes f(z) from p(z) with
probability €(k) is given. Suppose our input is y and our goal is to find the unique value z
such that p'(z) = y. The reduction {B), } proceeds as follows: choose a random 3 of the
appropriate length and run {Ag(y o z2), where k is chosen either £ = 2|y| — 1 or k£ = 2|y|,
so as to maximize €(k). With probability e(k), Ay outputs f(z o z2) = z o p'(z2). B, will
then output z.

Problem 2: The Blum-Rabin trapdoor permutation

Recall the definition of a family of trapdoor permutations. A trapdoor permutation family
counsists of algorithms (G, Mpk, frk, f;ll(). G generates a member of the family, that is to
say, a public key PK that allows to efficiently evaluate the permutation fpg, and the secret
key SK that allows to efficiently invert fpgx. Mpg is the algorithm that efficiently samples
the domain of the permutation fpg.

For example, in RSA, the procedure G generates the modulus n = pq and the exponent
e, and sets PK = (n,e) and SK = d, where de = 1 mod ¢(n). Furthermore, M(, .y = Zj,
fn,e)(®) = z® mod n, and f(;l}e) (y) = y® mod n.

(G, Mpk, fri, fp) constitute a trapdoor permutation if fpx is hard to invert. More
formally, for all probabilistic polynomial-time adversaries {Ay}, there exists a negligible
function v(k) such that

Pr{(PK, SK) « G(1");y < Mpi;z — Ap(y) = fri(z) = y] = v(k)
Consider the following collection of algorithms:

Key generation The procedure G(1*) generates two k-bit primes, p and g, such that
p = q =3 mod 4. It outputs PK = n = pg, and SK = (p,q). (Such a modulus n is
called a Blum integer.)
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Domain The domain M, of the permutation f, consists of all the quadratic residues
modulo n. More formally,

M, = {z |z € Z* A Ju such that z = u* mod n}
To sample from the domain, pick u < Z, and output z = u? mod n.
Computing the function The permutation f, is squaring: f,(z) = 22 mod n.

Inverting the function To compute f,!(y), one must compute the value z € M, such
that 22 = y mod n.

In this problem, you will prove that the algorithms given above constitute a family of
trapdoor permutations.

(a) Show that f, is a permutation. (Hint: work modulo p and ¢ first, and then combine
using the Chinese remainder theorem.)

Solution:

It is clear that f,, maps quadratic residues to quadratic residues. To show that it is a
permutation, we must show that it is invertible.

We must show that each quadratic residue y has a (unique) square root that is itself a
square. First, let us show this modulo p and g.

By Fact 6 of lecture notes 5-6, y has exactly two square roots modulo p. If one of them
is a, then the other is —a, because (1) a # —a (since one of them is odd, and the other
must be even) and (2) (—a)? = (p — a)? = p? — 2pa + a®> = a® mod p. Moreover, by Fact 8:

()= G G) o) = ()= )

i.e., exactly one of them is a square. Similarly, exactly one of y’s roots modulo ¢ is a square.
Without loss of generality, let these be a and b, respectively.

Let z € Z; be such that x = ¢ mod p and £ = b mod q. By the Chinese remainder
theorem, z exists (and z is unique). Moreover:

1. z is a square root of y: 22 = y. This is because z2 = y mod p, ¢, and therefore by the
Chinese remainder theorem, z2 = y mod n.

2. z is a quadratic residue: let o> = amod p and %2 = bmod ¢, then ¢ € Z¥ such
that £ = amod p and £ = 8 mod ¢ (by the CRT, it exists) has the property that
€2 = z mod n.

Thus, f~1(y) exists for all quadratic residues y.
(b) Suppose that p = 4m + 3 is a prime and that a is a quadratic residue modulo p.
Prove that ¢™*! is a square root of @ modulo p.

Solution:

Recall that by Fact 4, a = g%, where g is a generator modulo p. Therefore, a(P~1/2 =
g?"®=1 = (g*)P~1 = 1 by Fermat’s little theorem.
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Let us verify that b = a™*! is a square root of a, i.e., that b> = @ mod p. Note that
2(m+1)=2m+1)+1=(p—-1)/2+1.

b2 = g2(m+1) — G(—1)/241 _ ,(0-1)/2, — ,

(c) Devise an efficient algorithm that, on input (p,q,y), computes z = fz;zl (y), ie.,
such that z2 = y mod n, where n = pq is a Blum integer.

Solution:

The algorithm will first use part (c) to compute square roots of y modulo p and ¢, denote
them a and b respectively. Note that a and b are themselves quadratic residues, since they
were obtained by exponentiating a quadratic residue y.

We will then compute z € Z} such that £ = a mod p and z = b mod ¢ using the
Chinese remainder theorem. By Fact 10, z is a quadratic residue. By the CRT z? = v,
since 2 = a® = y mod p and 22 = b? = y mod g.

(d) Devise an efficient algorithm that, on input (n, a,b), where a,b € Z7,, a # £b mod n,
and a? = b? mod n, outputs a non-trivial divisor of n.

Solution:

Note that a? = b mod n implies that (a—b)(a+b) = mod n. Therefore pq | (a—b)(a+b).
But we are given that pg 1 (a — b) and pg mod (a + b). Therefore, WLOG, p | (a — b) and
q| (a +b). So we can output p = ged(a — b, n).

(e) Let us assume that factoring Blum integers is infeasible. More precisely, assume that
for all probabilistic polynomial-time adversaries { Ay }, there exists a negligible function v (k)
such that

Pr((n, (p,q)) + G(1%);p  Ag(n) : p|nA1l<p<n]=uv(k)

Show that under this assumption, it is infeasible to invert f,,. More precisely, show that
for all probabilistic polynomial-time adversaries { A }, there exists a negligible funtion v/ (k)
such that

Pr((n, (p,q)) + G(1%);y « My;z  Ap(n) : 2° =y mod n] = v/'(k)

(This fact is due to Michael Rabin.)

Solution:

Suppose we are given an adversary A who runs in polynomial time and inverts f,, with
probability e. We will construct an algorithm that also runs in polynomial time and factors
n with probability €/2. If € is a non-negligible function of the length of the modulus n (i.e.,
if f,, is not a family of OWP), this will contradict the hardness of factoring.

Note that, since each quadratic residue in Z;, has exactly four square roots, the following
experiments are equivalent’:

e Experiment 1: choose u € Zj uniformly at random.
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e Experiment 2: a random quadratic residue y and let u be chosen at random from y’s
four square roots.

The algorithm is as follows:

1. Choose u < Zj,.
2. Let v < A(n,u? mod n).
3. If (1) v?2 = v? mod n and (2) v = +u mod n, output ged(u — v, n).

It is clear by part (d) that if the algorithm terminates, it outputs the factorization of n.
We must now analyze the expected time this algorithm must run for before terminating.

The probability that (1) is satisfied is €, because it is just the probability that A inverts
fn on a random input. The probability that (2) is satisfied given that (1) is satisfied, is
1/2: since we can imagine that first y = u? is chosen, then v is computed, and then u is
chosen as a random one of the square roots of y, and so the probability that v = +u is 1/2.
Therefore, the probability that we factor n is €/2.
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