CS195-7: Introduction to Cryptography September 17-19, 2002

Lectures 5 and 6

Instructor:Anna Lysyanskaya

(This handout also contains some of the material covered in Lectures 2,3,4 for which I
did not make careful lecture notes.)

1 Recap

1.1 Notation

Let A denote an algorithm. Let A(-) denote the fact that A has one input. A(:,-) denotes
the fact that A has two inputs.

A(z) is a well-defined quantity if A is deterministic.

A(z) defines a probability distribution if A is probabalistic. More precisely: Let A'(-,-)
be the deterministic algorithm such that A’(z, R) is equal to A(z) with the random tape
R. Then A(z) is the distribution induced by picking R uniformly at random and running
A'(z, R).

If A is a probabilistic algorithm, y € A denotes that y can be obtained by running A for
some choice of random bits for algorithm A.

y < A(x) corresponds to choosing y from the distribution induced by A(z).
x < F, for a set F', means that x was selected from F' uniformly at random.
We can now introduce notation that represents a sequence of experiments:

EXAMPLE 1
((z,y) < A(3);z < B(y)) means that A was run on the input 3, producing values x
and y for output. Next B was run with input ¥ and produced output z.

EXAMPLE 2

Let B(z) be a boolean function of variable z.

To denote “Probability that B(y) is true, given that y is generated by A being run on
z,” we write Prly < A(z) : B(y)]

EXAMPLE 3

Let us formalize a statement such as “factoring RSA moduli is hard.” What does this
mean? First, it means that someone chose n at random. Then this n is given to the
adversary. Then the adversary tries to factor n and produces a candidate factor p’. We
wish to limit the probability that p’ is a non-trivial factor of n, VpptAy.

First, let us repeat this in English:

Pr[1. n gets chosen in some way;
2. m is given to the adversary and the adversary ouputs a candidate factor p’ of n
: p' # 1 and p' # n] < negligible function

-1

And now let us rewrite this using our notation:

Let PRIM ES), denote prime numbers of length k.

Vppt Ay, , 3 negligeble function f such that.

Prlp < PRIMESy;q < PRIMESi;n=p-qp = Ax(n)
:p' #1 and pl # n and p'|n] < f(k)

1.2 The RSA Trapdoor Permutation

To recall the notation such as Z7, ¢(n), etc, consult Dana Angluin’s notes.

Setup: On input 1%, choose two k-bit primes p and g, uniformly at random. Let n = pq.
Choose a value e such that ged(e, #(n)) = 1. Compute d such that d = 1/e mod ¢(n).
Output the public key (n,e), and the trapdoor (secret key) d.

Evaluation: f,. : Z} — Z} is defined as follows: fy, o(z) = ¢ mod n.

Inverstion: fn_,é(y) = y? mod n, where d is the secret key.

2 The Goldwasser-Micali Cryptosystem

Key generation: An RSA modulus n = pq is chosen, as well as an element u € Z;, such
that w is not a square modp and modg.

Encryption: To encrypt a message m, it is first divided up into bits: m = mqo...omy. To

encrypt the bit m;, choose a value r; <— Z;,, and output ¢; = T?uml This is equivalent
to outputting a random square mod 7 in case m; is 0, and a random non-square in
case m; is 1. The final ciphertext is ¢ = {c1,...,ce}.

Decryption: In order to decrypt a ciphertext {ci,...,c¢}, for each ¢;, determine whether
or not it has a square root. If yes, then m; := 0, otherwise, m; := 1.

Several mysteries remain about this cryptosystem at this point. First, why can key
generation be done efficiently? Is the decryption efficient? Is the decryption faithful, i.e.,
does it retrieve the original message? Finally, why is this cryptosystem secure? Let us
address these questions.

3 Some Useful Number-Theoretic Facts

Definition of the Legendre Symbol:
Let p be a prime number.
0: if GCD(a,p) #1
(9> = 1: if GCD(a,p) =1 and a is a square mod p
—1: if GCD(a,p) =1 and a is not a square mod p

Definition of Jacobi Symbol for RSA Moduli:
()= (5) (5)

-2

The term “square” can be used interchangeably with the term “quadratic residue”
throughout.
Fact 0 (Fermat’s little theorem): If p is prime, and a is relatively prime to p, then
a? = a mod p.
Fact 1: Z, is cyclic, i.e. there exists an element g € Z; such that for all elements a € Z;
there exists a unique number 0 < u < p — 1 such that a = ¢* mod p. Such g is called a
generator modp.

Fact 2 (The Chinese Remainder Theorem): Let mg,...,m; be pairwise relatively
prime integers. That is, ged(m;,mj) =1 for all 1 <i < j < k. Let the values a; € Zy,; be
given for 1 <4 < k. Let mm = [[m;. There exists a unique a € Z,, such that a = a; mod m;
for all i. Furthermore there is an O(k#2) time algorithm to compute a given ay,...,as,
mi,..., Mg, where £ = max(|m;|).
We won'’t give a proof of Facts 0, 1 and 2; see, for example, Goldwasser-Bellare’s lecture
notes for reference.
Fact 3: If p > 2 is prime, and g is a generator modp, then g cannot be a square modp.
That is, for all k € Z3, it is not the case that h* = g mod p.

Proof: Suppose 3h such that h? = g, then ”? ! = 1(mod p) by Fermats Little Theorem,

and so (hz)% = 1(mod p). Consequently g% = 1(mod p) but this is a contradiction
because g is a generator. (Exercise: Why can’t it be that for some 1 < u < p — 1,
g" =1 mod n if g is a generator?)
Fact 4: Let p > 2 be a prime. Let g be a generator modp. Let a = g% mod p be given. a
is a square if and only if u is even.

Proof: Assume u is even, then a = ¢%¥ = ¢g*?> mod p and a is obviously a quadratic
residue.

Assume a is a quadratic residue. Suppose that u is odd, u = 2v + 1. Since a is a

quadratic residue, ¢?**! = b? mod p for some b.
b2
g = gTU mOd p
2
= (g—v) mod p

but then g would be a quadratic residue which contradicts Fact 3.

Fact 5: Let p > 2 be a prime. Exactly one half of the elements of Z;, are quadratic residues
modp.

Proof: This is simply a corollary to Fact 4.

Fact 6: Let p > 2 be a prime. Let a be a square modp. Then a has exactly two square
roots modp.

Proof: First, let us show that a has at least two square roots: By Fact 4, a = ¢*° for
some generator g and some number 1 < v < (p—1)/2. Consider g and g® /2t Observe
that they must be distinct. Also observe that they are both square roots of a. Now, we
must show that no number has more than two square roots modulo p. For that, we do a
counting argument: by Fact 5, there are (p — 1)/2 quadratic residues. We just saw that
each of them has at least 2 square roots. That brings us to p — 1 elememts accounted for.
There is no more room for any other element to have any other square root.

-3

Fact 7: Let p > 2 be a prime. Then 1 is a square modp and its only square roots are 1
and —1 mod p.
Proof: Fact 7 is simply a corollary of Fact 6.

. i ab) _ (a) (b
Fact 8: Let p be a prime. Then (p) = (p) (p).

Proof: Let g be a generator. Let a = g% mod p, b = g” mod p. By Fact 4, (%’) =1if

and only if w + v is even, otherwise it’s —1. On the other hand, (%) (;%) =1 also if and

only if u + v is even, otherwise it’s —1. Fact 6 follows.
Fact 9: The Legendre Symbol is computed by the following algorithm:

Test p|a, if p does divide a output 0, otherwise output a"7" mod p
Proof: Case 1: a is a square. By Fact 4 Jv such that a = ¢?Y mod p
a'7 = ()7 =g’ = 1mod p
Thus we have shown that if a is a square, the Legendre Symbol is computed correctly.
Case 2: a is not a square. Then by Fact 4, a = ¢?**! mod p. Therefore, a?~1/2 =
(¢*)? 1g®=1/2 mod p. By Fermat’s little theorem, we know that (¢g¥)?~' = 1. What about
g®1/2 mod p? First, observe that it is a square root of 1, since g1 = 1. Now, notice
that since g is a generator, it cannot be equal to 1. 1 has only two square roots, and by
Fact 7 they are 1 and —1. We’ve ruled out 1, so it must be —1.
Fact 10: a is a quadratic residue mod n = pipy if and only if a1 is a square modp; and
as is a square modpo, where p; > 2 and py > 2 are primes.
Proof: Let us first show the = direction. Assume a is a quadratic residue. We need to
show that a; and ay are also quadratic residues.

3b such that b2 = ¢ mod n.
Let by = bmod p; and b2 = b mod ps.

b%:b2:a:a1mod p1

. Therefore, a; is a square. Similarly for by, which proves that as is a quadratic residue as
well.

Assume that a1 and a9 are quadratic residues.

3b1,be such that a; = b mod p and az = b3 mod ¢.Then by the Chinese Remainder
Theorem, 3b such that b = by mod p and b = by, mod q.

b? = a; mod p
b2 = ay mod p

Therefore since a is unique, b> = @ mod n by the Chinese Remainder Theorem.
Fact 11: Let n be an RSA modulus (i.e., n = p1p2, where p; > 2 and py > 2 are primes).
Exactly one quarter of the elements of Z; are quadratic residues.

Proof: Easy to see by combining Fact 10 with Fact 5.
Fact 12: Let n = pg be an RSA modulus. Exactly half of the elements of Z; have Jacobi
Symbol 1.

4

*

Proof: This is obtained by a counting argument. Consider a € Zj, b € Z3. By the Chi-
nese Remainder Theorem, there is a unique element ¢ that corresponds to them. Moreover,

by definition, (%) = (%) (g) There are four possibilities. Case 1: (%) =1, (g) =1, and

SO (%) = 1. Case 2: (%) =1, (g) = —1, and so (%) = —1. Case 3: (%) = —1, (g) =1,

and so (ﬁ) = —1. Case 4: (%) = —1, (g) = —1, and so (%) = 1. By Fact 5, it is easy to
see that exactly one quarter of ¢’s correspond to each of these cases.
Fact 13: Let n be an RSA modulus. Let Ji(n) denote the set of elements of Z* mod n
with Jacobi Symbol 1. Exactly half of the elements of J;(n) are squares.

Proof: This follows from the proof of Fact 12.
Fact 14: Let n = pg be an RSA modulus. One can efficiently determine the quadratic

character of any a € Z; given the factorization of n.

Proof: For example, this can be done by computing (%) and (%) and verifying that
these are 1. By Fact 10 this gives the right answer, and by Fact 9 this can be done efficiently.
Fact 15: Let n be an RSA modulus. For any a € Z;, one can efficiently compute (%)
without the factorization of n.

Proof: We will omit the proof, but you can find it in GB lecture notes.

Don’t confuse the Jacobi symbol modulo n and the quadratic character modulo n. Fact
15 tells us that the Jacobi symbol can be computed even without the factorization of n,
while the quadratic character modulo 7 is something that we hope can only be computed
if the factorization of n is known.

4 Quadratic Residuocity Assumption

If n is an RSA modulus chosen as random, and a random a € N}, with Jacobi symbol 1,
then you can’t tell whether a has a square root mod 7 or not.

Using our notation, the assumption is as follows:

Let J1(n) denote the selection of a random element of Z mod n with Jacobi Symbol

Let QC(a,n) denote the quadratic character of a modulo n. That is to say, QC(a,n) =
“square” if a is a square and QC(a,n) = “non-square” otherwise.

Vppt{ Ak} 3 negligible function f such that Vk:

Prlp < PRIMESy;q < PRIMESy;a < Ji(p*q);b <+ Ag(n,a)
:b=QC(a,n)] < 5+ f(k)

5 Proof of Security of the GM Cryptosystem

Besides coming up with their cryptosystem, Goldwasser and Micali (GM) also (1) defined
semantic security (as a relaxation of information-theoretic security; we discussed their def-
inition in Lecture 2); (2) gave a definition that is easier to work with and proved that it
is equivalent to semantic security; and (3) proved security of their cryptosystem under the
definition that is easier to work with.

For now, we will focus on their definition of security for sending one bit in the public-
key setting. We will state the definition, called GM-security. We will then prove the GM
cryptosystem GM-secure under the quadratic residuocity assumption. In future lectures,
we will extend the notion of GM-security to many bits, and then show that it is equivalent
to semantic security.

5.1 Indistinguishability

The idea behind security based on computational assumption, is that no matter whether a
ciphertext is drawn from the set of ciphertexts for the message “I love you,” or ciphertexts
for message “I hate you,” it will look the same to any computationally bounded adver-
sary. So there are two samplable sets Sy and S, such that a random sample from S is
indistinguishable from a random sample from Si, and yet Sy NSy = (. More formally:

Definition 5.1. Two efficiently samplable distributions Sy and Sy cannot be v(k)-distinguished
by algorithm {Ay} if

Pr[b « {0,1};z « Sp(1%);b' < Ay : b =1 < 1/2 4 v(k)

Definition 5.2. Two efficiently samplable distributions Sy and S1 are computationally in-
distinguishable if for all probabilistic polynomial-time algorithms {Ay} there exists a negli-
gible function v(k) such that Sy and S1 cannot be v(k)-distinguished by {Ag}.

Definition 5.3. Two efficiently samplable distributions Sy and S1 are statistically indis-
tinguishable if for all (not necessarily bounded in any way) algorithms {Ay} there exists a
negligible function v(k) such that Sy and S1 cannot be v(k)-distinguished by {Ay}.

Definition 5.4. Two efficiently samplable distributions So and S1 are perfectly indistin-
guishable if they are indentical.

We will see indistinguishability pop up again and again! Now it is popping up for the
purposes of secure encryption.

5.2 GM-Security for One-Bit Messages

Informally, a public-key cryptosystem is secure for sending a one-bit message if the distri-
bution Cj of ciphertexts for 0 is computationally indistinguishable from the distribution C
of ciphertexts for 1, and yet Co N C; = 0.

More formally: A public key cryptosystem (G, E, D) is GM-secure if

Key generation The key generation algorithm, denoted by G, is a probabilistic polynomial-
time algorithm that takes as its sole input the security parameter k. However, since
traditionally we say that an algorithm is polynomial-time if its running time is poly-
nomial in the size of its input, G’s input k will be encoded in unary, denoted 1¥. The
output of G is the key pair, (PK,SK). Using the notation introduced above, we
write:

(PK,SK) < G(1%)

We say that the secret key SK corresponds to the public key PK if (PK,SK) can be
produced by running G(1*).

Encryption The encryption algorithm F is a probabilistic polynomial-time algorithm that
takes as input a bit b and the public key PK and produces as output the ciphertext
c:

¢ < E(b, PK)

such that E(0, PK) N E(1, PK) = 0, ie., if ¢ is a ciphertext for b it cannot also
be a ciphertext for b, no matter what the random bits were that were used for key
generation and encryption.

Decryption The decryption algorithm D is a probabilistic polynomial-time algorithm that
takes as input the ciphertext ¢ and decides whether ¢ € E(0, PK) or ¢ € E(1, PK).

Security The distributions E(0, PK) and E(1, PK) are computationally indistinguishable.
More precisely: for all probabilistic polynomial-time families of algorithms { Ay}, there
exists a negligible function v(k) such that

Pr[(PK,SK) + G(1%);b < {0,1};¢ + E(b, PK);b' + Ay(PK,c): b=1V]=1/24v(k)

5.3 Quadratic Residuocity Assumption

Recall that no public-key cryptosystem exists if P = NP, and so security of a public-key
cryptosystem can only be proved under an assumption about the complexity of computa-
tional problems. Goldwasser and Micali proved that their cryptosystem was secure under
the quadratic residuocity assumption.

In a nutshell, the quadratic residuocity assumption is the assumption that quadratic
residues (QR) modulo an RSA modulus are computationally indistinguishable from quadratic
non-residues with Jacobi symbol 1. More precisely:

Let RSAj denote the set of RSA moduli n = pg where [p| = |¢| = k.

Let Ji(n) denote the set of elements of Z} mod n with Jacobi Symbol 1.

Let QC(u,n) denote the quadratic character of v modulo n. That is to say, QC(u,n) =
“square” if u is a square and QC(u,n) = “non-square” otherwise.

Assumption 5.1 (Quadratic residuocity assumption). For all probabilistic polynomial-
time families of algorithms {Ay}, there exists a negligible function v(k) such that

Pr[n < RSAg;a < Ji(n);b < Ag(n,a) : b =QC(a,n)] =1/2+ v(k)

Let QR(n) denote the set of quadratic residues modulo n. Let QN R(n) denote the set of
quadratic non-residues modulo n with Jacobi symbol 1. Note that a + (QR(n) UQN R(n))
is equivalent to a < Ji(n).

Recall (Fact 13) that exactly half of the elements of Jj(n) are squares, so in fact
|QR(n)] = |QNR(n)|. Then another, equivalent way of writing the selection of a is:
(b « {0,1};a0 + QR(n);a; + QNR(n);a = ap). That is to say, we first choose b,
the quadratic character of a, and then choose a in accordance with b. In other words:

Assumption 5.2 (QR assumption, restated). For all probabilistic polynomial-time fam-
ilies of adversaries {Ay}, there ezists a negligible function v(k) such that

Pr[n < RSAg;b < {0,1};a0 < QR(n);a1 <+ QNR(n);a = ap; b’ + Ag(n,a) : b= 1]

6 Proof of Security for One-Bit Messages

We want to show that if there exists an Eve who can efficiently figure out the encrypted
bit, then the quadratic residuosity assumption is false.

(n,a) A (our reduction)
R ——

(M%), Eve

aisfisn'ta QR mod n

So we need to construct an algorithm A that receives, as input, the values (n,a) and that
uses Eve as a “black box.” That is, it creates the inputs that Eve expects to receive, and
interprets the output. In the event that Eve breaks the security of the encrypted bit, our
algorithm A will break the QR assumption, i.e. it will, with probability non-negligibly
better than 1/2, determine the quadratic character of a.

Assume, for contradiction, that there exists an adversary Eve such that there exists an
inverse-polynomial p(k) such that for infinitely many £,

Pr[(PK,SK) + G(1%);
b+« {0,1}
c <+ E(PK,b);
b' < Eve(PK,c): b =0b>1/2+ p(k)

Consider the following algorithm: on input (n,a), set PK = (n,a). Then, choose b,r at
random and let ¢ = r2a® mod n. Obtain b’ = Eve(PK,c). If ¥’ = b, output “Non-square”
(or 0) Otherwise, output “Square” (or 1).

Claim 1: if ¢ is a non-square, then the probability that b’ = b in this experiment is the
same as the probability that Eve guesses the encrypted bit correctly. More precisely,

Pr[n < RSAg;
a < QR(n);
b+ {0,1};
T = 1L}

C < 7‘2ab;

b < Eve((n,a),c): b =b>1/2+ p(k)

Proof: The claim follows because in this case we are copying the GM cryptosystem set-up
exactly. The first two steps comprise G, the next step is the selection of the message, and

-8

the next two steps are the encryption F. This is exactly what we have assumed that Fve
can do. 0
Claim 2: if a is a square, then the probability that b’ = b is exactly 1/2. More precisely:

VPPTF{Evey;}
Pr[n < RSA;
a < QR(n);
b+« {0,1};
T 4 ZLy;
¢ + r2a’;

b < Eveg((n,a),c): b =b=1/2

Proof (intuition): Suppose a is a quadratic residue. Then, no matter what b is, c is dis-
tributed in the same way, i.e. ¢ is always a random quadratic residue. Thus b is distributed
independently on (n,a,c). Therefore, we can view Eve’s output ¢’ as fixed before b is even
decided. Therefore, the probability that b will come out equal to b’ is exactly 1/2.
Proof (formal): Suppose a is a quadratic residue and n as given. Then, E((n,a),0) and
E((n,a),1) have distributions identical to that of a randomly selected quadratic residue.
Consider a quadratic residue r. Observe first that |QR| = ¢(n)/4 = (p —1)(¢ —1)/4. Thus,
for a quadratic residue chosen uniformly at random from the space of quadratic residues
modulo n, probability of selecting r is |QR|™!, or 4/¢(n).

Now, let us consider p; = Pr[r’ + E((n,a),1) : v = r]. This means we take a random
z? and transform it by multiplication by a. Since a is a quadratic residue (by assumption),
the product is also a quadratic residue. We show that this is a bijective map.

one-to-one We need a~! to exist; but since this is a subset of ZZ, it does.

onto We must show that given 32, there is 22 such that y?> = az?. Let o = a. Then
(y/@)? =22

Thus, p; is the same as the probability of selecting any quadratic residue, or 4/¢(n).

It is clear that Pr[r' < E((n,a),0) : v = r] is also 4/¢(n) since encrypting a zero
involves exactly selecting a random number and squaring it.

Since these three are identically distributed then, we can rewrite the Claim 2 as:

VPPTF{Eve}
Pr[n < RSA;
a < QR(n);
¢+ QR(n);
b < Eveg((n,a),c);
be {0,1}: b =b=1/2

That is, since encryption produces essentially a random quadratic residue (if a is a QR),
Eve’s output is essentially fixed: it does not matter what b is chosen. Since we are randomly
selecting the plaintext, Eve’s output will match ours half the time. O

To complete the proof of the reduction, note that:

Pr[A is correct] = Pr[A is correct |a € QR(n)] Prla € QR(n)] +
Pr[A is correct |[a € QNR(n)] Prla € QN R(n)]

1 1 1 1

PAER (5 “’(’“)) 5

1 p(k)

2ty

This is a basic fact from probability where we condition on all the possible cases for a. And
so if Eve’s advantage over 1/2, p(k), is non-negligible, then our algorithm A will also have

a non-negligible advantage p(k)/2.
More formally, the probability that A is correct can be written:

Pr[n < RSA;
d <+ {0,1};
ap < QR(n);a1 < QNR(n);a < ag;
d + Ag(a,n): d' =d]

Conditioning on whether a is a QR, this can be rewritten as:

Pr[n + RSAg;a + QR(n);d < Ax(a,n) :d =0] xPr[d+ {0,1} :d = 0]
+ Pr[n <« RSAg;a <+ QNR(n);d < Ag(a,n): d =1] x Pr[d < {0,1} : d = 1]

But, since we know that Ay really makes use of Eveg, this is exactly equal to:

Pr[n < RSAy;a + QR(n);b «+ {0,1};
r < Ly;c < r2a’ b = Bveg((n,a),c) =V =b] x Pr{d < {0,1} : d = 0]
+ Pr[n <« RSAp;a <+ QNR(n);b+ {0,1};
r 4 Ly 12’ b = Bueg((n,a),c) 18 =8 x Prld {0,1} : d = 1]

Fortunately, the claims above allow us to substitute in values. Claim 2 allows us to substitute
exactly 1/2 x 1/2 for the first addend and Claim 1 says that the second addend is greater
than (1/2 + p(k)) x 1/2. If we let p be the above probability, then:

()3 (o)

p(k)
2

Y

p

1
- 2

-10

