CS195-7: Introduction to Cryptography September 3, 2002

Lecture 1

Instructor:Anna Lysyanskaya

This course is about secure and authentic communication in an adversarial setting.

Let us consider two fundamental cryptographic problems: secure communication and
data authenticity. In this lecture, we will focus on the first one; while the problem set will
familiarize you with the second one.

Consider a toy scenario: Alice wants to send a message to Bob, but there is an eaves-
dropper Eve who can observe everything that Alice says. Instead of sending her message
m in the clear, Alice will encrypt it and send the ciphertext ¢ instead. We want to devise a
system where Alice can send a ciphertext ¢ that Bob will be able to correctly decrypt, and
yet Eve will have no idea what was sent.

1 Defining Security

In defining security, we must first answer questions such as: Who are Alice, Bob, and Eve?
What is a message? What is needed for the encryption and decryption algorithms? What
does it mean to learn nothing?

Alice, Bob, and Eve are all algorithms. Our task is to specify the algorithms for Alice and
for Bob, such that no matter what Eve does, our cryptosystem remains secure. (Moreover,
we should assume that Eve does not know the algorithms that we specify for Alice and Bob.
Such an assumption would weaken our definition, while not gaining us anything. Having
Alice and Bob run proprietary obfuscated code makes it harder to deploy the cryptosystem
at hand, while an attacker can actually get his hands on the algorithm by, for example,
bribing the people who designed it.)

As for the message, as far as Eve is concerned, the message comes from some probability
distribution. Let us write m < M to denote that message M came from probability
distribution M. We can define a secure cryptosystem for a specific M, or for all distributions
M on messages of a given length. (It is easy to see that we cannot hope that Eve learns
nothing about the length of the message, or rather the number of bits needed to write down
the message, since the length of the ciphertext ¢ is an upper bound on the length of the
message.)

It is clear that in order to communicate securely, Alice and/or Bob must know something
that Eve does not know. Otherwise, Eve can decrypt the message just as well as Bob can
— we have assumed that she knows his algorithm. Therefore, in addition to the encryption
and decryption procedures, we must assume a setup procedure that generates the secrets
for Alice and Bob. To be as general as possible, let us imagine that this setup procedure
generates secrets for Alice and Bob (let us call them s4 and sp), and also may give away
some extra information to Eve (let us call it sg), and also possibly generates some public
parameters P.

The encryption algorithm will have to take as input: the message m that is being en-
crypted, perhaps also Alice’s secret input s4, the public parameters P, and maybe some

-1

random bits r as well. The encryption algorithm will produce the ciphertext c. The decryp-
tion will have to take as input the ciphertext ¢, Bob’s secret sp, and the public parameters
P, and, in order for this system to have any meaning, must output the message m that
Alice encrypted in the first place.

The hardest part to capture is, of course, what it means to learn nothing. The traditional
information-theoretic approach (due to Shannon) is to say that the a-priori information
about the message — namely that it came from distribution M — is all that Eve will know
even after she sees ciphertext c, i.e., even conditioned on the fact that ¢ was the ciphertext
Alice sent to Bob.

To summarize, the definition is as follows:

Definition 1.1 (Unconditional Security). Algorithms (G, E,D) constitute a secure
cryptosystem for all messages spaces of length n if

Setup algorithm Algorithm G takes as input a sequence of random bits, and produces
secret inputs sa, sp, sg for Alice, Bob, and Eve respecitively. It also sets up some
public parameters P.

Encryption Algorithm E takes as input the message m € M, Alice’s secret s4, the public
parameters P, and some randomness r, and outputs the ciphertezt c.

Decryption The decryption algorithm D takes as input a ciphertext c, Bob’s secret sp,
and public parameters P, and outputs a message m' such that for all m € M, c, s4,
sB, P, if the probability that ¢ is a ciphertext for m, and Alice’s and Bob’s secrets are
sA and sp, and the public parameters are P, is positive, then on input (c,sp, P), Bob
will always output the message m.

Security For all messages m, and for all possible ciphertezts ¢ for the message m, Prys[m] =
Prar,g,e[m|c], where Prys denotes that the distribution that m is drawn from is M,
while the notation Pry g r denotes that the joint distribution of (m,c) is determined
by running algorithm G, then picking message m from the distribution M, and then
running E on the appropriate inputs. (Later on, we will develop more convenient
notation.)

2 Achieving Our Definition

It turns out that it is possible to achieve this definition using a very simple encryption
algorithm. However, this encryption algorithm requires a very expensive setup procedure:
Alice and Bob must share a secret of the same length as the message that they are trying
to communicate. Unfortunately, this is optimal, and the argument for showing it is also
rather simple. Let us now elaborate.

2.1 The One-Time Pad Cryptosystem

Assume that the (binary) length of the message that will be sent is n. The generation
procedure G simply picks a binary string s of length n uniformly at random, and gives it

-2

to Alice and to Bob as their secret input. The encryption and decryption are as follows:
E(m,s)=m®s
D(c,s)=c®s

Theorem 2.1. The one-time pad is a secure cryptosystem for any message space M on
messages of length n.

Proof. 1t is obvious that the generation, encryption and decryption requirements of our
definition are met. Let us now prove the security requirement.
First, recall that Pr[m|c] = Pr[m A ¢|/ Pr[c]. Now,

Prfm A¢] = Pr[m]Pr[c|m]
= Pr[m]|Pr[s = c ® m|m]
Prim]2™"

because s is chosen independently of m. On the other hand,

Prlc] = Z Pr[m/] Pr[c|m/]
m'€{0,1}"
= Z Pr[m/]27"
m'e{0,1}n
= 97"
Therefore,
Prlmld = Pr[m A]
N Pr[c]
27" Pr[m)]
= —5=
= Pr[m]
which completes the proof. O

This cryptosystem is called a “Vernam cipher,” after Gilbert S. Vernam who proposed
it in 1917 to protect telegraph communications. (Note that 1917 was before probability
theory existed, so I think it must have been Claude Shannon who first proved security of
the Vernam cipher using probability theory.)

So we are doing well: we have a great cryptosystem. But suppose we wanted to use
it twice. Will it still be secure? Actually, no. This is because, while Eve will not be able
to retrieve full information about the two messages sent, she will be able to compute their
exclusive-or! Here is why: let ¢; = m1 @ s be the ciphertext for m1, while co = mo ® s is the
ciphertext for ms. Observe that c;®co = (M1®s)D(Me®s) = (M1 Dme)D(sBs) = miDmo.
So we are not secure at alll What happened? The thing is that if we are going to encrypt
two messages, it is almost like encrypting one message that is twice as long. So we are
encryping a 2n-bit message, while our proof of security was only for n-bit messages.

It turns out that this limitation is fundamental.

-3

2.2 Shannon’s Impossibility Result

If Alice and Bob only share a secret of length n, then there is no method which can enable
them to securely communicate a message of length n + 1.

Theorem 2.2. Let (G, E,D) be given. Let M be a message space, and S be the space of
keys that G produces as shared keys for Alice and Bob. |M| > |S|, then there exists m € M
and a ciphertezt ¢ such that Pr[m] # Pr[m|c|.

Proof. This proof can simply be done by counting. Fix a possible ciphertext c¢. Try all
possible keys s to decrypt it. Since there are only |S| < | M| possibilities, some message
m € M cannot possibly be the correct decryption of ciphertext c. So while we have Pr[m] >
0, it is the case that Pr[m|c] = 0. O

Actually, Shannon showed something stronger than what I showed here. He showed
that even if you allow Pr[m] = Pr[m|c] instead of “=", the limitation is still there.

3 Relaxing the Definition

Despite the limitation discovered by Shannon, we still would very much like to communcate
securely! But the only way to do that is to settle for a weaker notion of security. One
way of relaxing the definition is as follows: instead of requiring that no matter how sneaky
Eve is, she does not find out anything about the message, we may only consider Eve whose
computational or other resources are bounded. So we may settle for a situation when in
fact Pr[m| # Pr[m|c|, and yet no algorithm for Eve that executes sufficiently fast will be
able to notive the difference.
How to appropriately relax this definition will be the subject of the next lecture.

4

