CS195-7: Introduction to Cryptography October 15-17, 2002

Lectures 11-12

Instructor:Anna Lysyanskaya

These lecture notes contain the proof of the Goldreich-Levin theorem.

1 Recap of definitions

1.1 One-way functions and one-way and trapdoor permutations

Definition 1.1. A set of efficient probabilistic algorithms (G(-), S(), f.(+)), specifies a fam-
ily of one-way functions (OWF family) if for all PPTF { Ay} there exists a negligible function
v(k) such that

PriPK « G(1*);z < S(PK);y « frr(x);2’ + Ax(PK,y) : f(z) = f()] < w(k)
and for all PK € G, for all x € S(PK), fpk is a function.

Definition 1.2. A family of one-way functions (G, S, p) is a family of one-way permutations
(OWP family) if for all PK € G, ppk 1is a permutation.

Definition 1.3. A family of one-way permutations (G, S,p) is trapdoor (TDP family) if
(1) the output of G consists of two values, denoted (PK,SK); and (2) there is an efficient
algorithm D such that for all k,

Pr[(PK,SK) + G(1%);z « S(PK);z' + D(SK,ppk(z)):z=2']=1

Definition 1.4. A family of one-way functions (resp., permutations) (G, S, f) is a one-way
function (resp., permutation) if G is a deterministic algorithm.

1.2 Hardcore bit

Motivation: How to encrypt using a trapdoor permutation family, such as RSA. How to
construct pseudorandom sequences.

Definition 1.5. Let (G, S, f) be a OWF family. Let b,y(o) be a Boolean function. b is a
hardcore bit for (G, S, f) if

1. bpk(x) is approximately a bit of information about . More precisely, there exists a
negligible function p such that for all PK € G(1F)

| Pr[z < S(PK);bpk(z)] — 1/2] < p(k)

2. It is hard to compute bpg (z) from the values PK and fpg(x). More precisely, for all
PPTF {Ay} there exists a negligible function v(k) such that

Pr[PK + G(1%);2 « S(PK);¥ « Ay(PK, fri(z)) : b = bp(2)] < 1/2 + v(k)
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Note that although a hardcore bit is defined for OWF families, this concept makes much
more sense when we consider OWP families.
Given a hardcore bit, we can build:

e Secure PK cryptosystem: given PK, to encrypt m € 0,1, pick = such that bpg(z) =
m, send fPK(:E)

e Psudorandom generator (convert short string to long string) (see next lecture.) This
allows us to increase complexity of PK cryptosystem.

2 The Goldreich-Levin theorem

Theorem 2.1. For any OWP family, for all but a negligible fraction of r € {0,1 ¢ for all
but a negligible fraction of permutations in the OWP family, b,(z) = z.r = @;_, z;r; is
hardcore.

This is a rather technical proof. The reason that I want to show it to you is that I believe
it is very important. In some sense, this theorem says that if there is any hardness in the
world, then we can put it to good use! Without this theorem, one can imagine that all of
crypto would break down once some specific assumption gets broken. But with it, we know
that we are OK as long as one-way (or, for public-key encryption, trapdoor) permutations
exist.

Another reason why I want to show it to you is that I think it is rather ingenuous and
I hope you will be impressed.

Proof. Tt is sufficient to show that, if ply(-) is a one-way permutation family of Spx C
{0,1}PK) then ppk(-,-) where the second argument is randomly chosen from {0, 1}¢(F5),
and ppk(z,7) = plpy(x) o r is a one-way permutation with hardcore bit b(z,r) = z.r. It is
clear that p is a OWP family. It is also clear that b gives one bit of information about its
input.

Suppose for contradiction that b(x,r) is not hardcore for p.

Then there exists a predictor { A} and a polynomial a(k) such that for infinitely many
k’s

p = Pr[PK + G(1*);2 « S(PK);r « {0,1}PE) ¢/ = A, (PK,ppic(z,r) : b = z.7] > 1/2+1/a(k)

Consider a value k for which the statement above is true. It is easy to see that for a
polynomial fraction of all PK € G(1*), call them the ”good” PK’s,

Pgood = Pr[z < S(PK);r + {0,1}*FK) 4 = Ap(PK,ppk (z,r) : ¥ = z.r] > 1/2 4 1/2a(k)
Why? Let g = Pr[PK <« G(1¥) : PK is good]. Suppose g < 1/a(k). Then

b = pgood*g‘l'pbad*(l_g)
< 1xg+4+(1/2+1/2a(k))(1 —g)
= 1/2+1/2a(k) + g(1/2 — 1/2a(k))
< 1/2+1/2a(k) + 1/2a(k) — 1/2a* (k)
< 1/241/a(k)
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But we know that p > 1/2 + 1/a(k), so this is a contradiction.
By the same token, for all good PK’s, for a polynomial fraction of z € S(PK) (call
these z’s ”good”)

Prfr + {0, 1}PF). 0 « Ay (PK,ppk(z,7)) : b = 2.7] > 1/2 4 1/4a(k)

Suppose that PK and z are good, and that we are given y = p’pi(x). Since this
occurs with non-negligible probability, it is enough to show how to invert ppx when we are
restricted to this situation.

Let us show how to build an inverter Ry that inverts ppg(-) using the predictor Ay.

Before we go any further, let us get some intuition. Imagine that, somehow, we already
know the value z.77/ for a whole bunch (say, £(4a(k))?) of values {r’} . How can we use
this information and the predictor A, to give us ? Well, if the 7/’s are totally random,
we just divide them into batches of (4a(k))? each. Use batch number i to compute bit z;
by running Ay on input (PK, (y o (r @ ¢;))), where e; denotes a string of all but one 0’s,
with a 1 in position ¢. Significantly more than one half of the tests in batch ¢ will give the
right value for z.(r/ @ e;). Now, what we are after is actually z.e;. How do we get that?
Observing that z.e; = z.(r & (r ® ¢;)) = (z.r) & (z.(r & ¢;)), we will do it by taking the
majority of (z.r) @ (z.(r! @ e;)).

How do we get the values z.r/ for a bunch of totally random r7’s? The answer is:
we won’t. If our 7/’s aren’t totally random but are pairwise independent. We don’t have
to compute 77’s, but can just guess them correctly with good probability. This will also
be sufficient, as it turns out, for the majority of the tests to give us the right answer for
z.(rl @ e;).

(Recall that random variables X and Y are pairwise independent if for any value y of
the random variable Y, Pr[X|Y = y] = Pr[X] and for any value z of the random variable
X, PrlY|X = z] =Pr[Y].)

Exactly how we do that:

To generate L pairwise independent r’s with probability 1/L correctly guessed z.r7,

l l

e First, pick u = [log L + 1] randoms s’s, make a guess o' for the value z.s'.

e For all J C [u] = [1,...,u] (there are 2 ~ L such J's), let 7/ = @, s, so z.r/ =
@, -s), and so our guess for z.r’ is p’ = P, ;0!).

It is easy to see that (1) the values 7/ are pairwise independent, and (2) IF for all

1 <1< u, o is the right guess for z.s' (call this event A), THEN for all J C [u], p’ is the
right guess for z.r”.
Now we must show that the majority of Ay’s answers for the values z.(r’ @ e;) are

correct with probability at least 1 — 1/2k, i.e.
Pr[For more than one half of J’s, Ay (y, (r! @ e;)) = z.(r! @ e;)] >1—1/2k

This follows by using some inequalities from probability theory.
Chebyshev’s inequality: if X is a random variable, and ¢ > 0, then: Pr[|X — E(X)| > 4] <
Var(X)/8%.

1 superscript 7, not 7 to the jth



We want to use this inequality to bound the probability that the majority of the answers
of Aj are incorrect. If our random variable X is the number of correct guesses, then
E[X] = L(1/2+1/4a(k)), and d that we are interested in is § = Le, i.e., we want to bound
the probability that X deviates from its expected value from more than §. So this would
give us a good bound if we knew Var(X).

Let us estimate Var(X). Let us show the following:

Claim: If X,..., X, are pairwise independent, then Var[>  X;] =Y Var[X;].
Proof of claim: Var[>. X;] = E[(3 X;)?] — E?[Y_ X;] essentially by definition of variance.

E(Q_X)?* = ED_ X7+ XiXj
=1

i£]
n
= Y E[X{]+ ) E[X;X))
i=1 i#£]

n
= Y E[X]]+ ) E[X]E[X]]
i=1 i#j
where the last two derivations follow by linearity of expectation and pairwise independence,

respectively.
On the other hand,

B )_Xi] = ED_XJE]D X/
= O EX)O . EX)

= Y EUX]+) EX]EX)]

i#]

Putting these together:

Var[X] = Y EIX{]+) EIXI]E[X;] - E’[X)]| - ) E[X,]E[X;]
i=1 i#] i=1 i#j
= Y (BIX7] - E’[X)) + ) _(E[X|E[X;] — E[X,]E[X]]
i=1 i#]

= Z Var(X;)
i=1

Putting the claim together with Chebyshev’s inequality, we get the following corollary:

Corollary: If X4,...,X,, are pairwise independent, with expectations u; and variances
(02), then for every § > 0, Pr[| Y. X; — > | > 6] < Y 02/6%

Let us use the corollary. In our case, yu; = 1/2 + 1/4a(k), 02 can be upper-bounded by
1/4,n = L, § = L/4a(k). So overall, if we set L such that 2k < L/16a?(k),
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Pr[For less than one half of J’s, Ax(y, (r! @ €;)) = z.(r7 ® €;)]

IN

Z o? /8%
L/4
(L/4a(k))?
16a2 (k)
L

1/2k

IN A

And therefore, we are done.



