
CSCI 1950-F Homework 2: ML & Bayesian Estimation

Brown University, Spring 2012

Homework due at 12:00pm on February 16, 2012

We begin by considering examples, produced by a sophisticated simulator, of data which
might be collected by a gamma telescope observing high energy particles. The raw data,
“showers” of particles on a planar detector, have been converted into 10 continuous features
as outlined here: http://archive.ics.uci.edu/ml/datasets/MAGIC+Gamma+Telescope.
Our goal is the binary classification of the “primary” gamma signals of scientific interest
from background, hadronic shower events.

We have converted this data to Matlab format. The D = 10 continuous features for each
of the N = 15, 216 training examples are stored in a N ×D matrix train. The class labels
are stored in an N × 1 vector trainLabels, where primary gamma signals have label 1 and
background events have label 0. Similarly, test data is stored in test and testLabels.

Question 1:

We will model the gamma telescope data with a naive Bayes model, in which a Gaussian
distribution is used to model each feature of each class. Each of these distributions has a
potentially distinct mean and variance.

a) Give an equation for the joint log-likelihood of this naive Bayes model, defining parameters
as appropriate.

b) Specify the equations for maximum likelihood (ML) estimation of the model parameters
from the training data.

c) Implement this parameter estimation algorithm. Compute and plot an ROC curve on the
test data to evaluate your classifier.

d) Suppose that the frequencies of the classes are as in the training data, and that all errors
are equally costly. Determine the optimal Bayesian classification rule. What are the true
positive rate and false positive rate of this rule on the test data?

e) Suppose that the frequencies of the classes are as in the training data, and that it is
50 times more costly to classify signals as background (missed detections) as to classify
background as signals (false alarms). Determine the optimal Bayesian classification rule.
What are the true positive rate and false positive rate of this rule on the test data?
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Now consider a binary categorization problem, where we want to assign a label yi ∈ {0, 1}
given observation xi. Let ρi = p(Yi = 1 | xi) and 1 − ρi = p(Yi = 0 | xi). Suppose that
the classifier ŷ(xi) is allowed to make one of three decisions: choose class 0, choose class 1,
or “reject” this data (refuse to make a decision). We can use a Bayesian decision theoretic
approach to tradeoff the losses incurred by incorrect decisions and rejections.

Question 2:

Suppose that the classifier incurs a loss of 0 whenever it chooses the correct class, a loss of
1 whenever it chooses the wrong class, and a loss of λ whenever it selects the reject option.
Express the optimal decision rule ŷ(xi), which minimizes the posterior expected loss, as a
function of ρi and λ ≥ 0. Simplify your answer as much as possible.

The next question asks you to devise ML and Bayesian MAP estimators for a simple
model of an uncalibrated sensor. Let the sensor output, X, be a random variable that ranges
over the real numbers. We assume that, when tested over a range of environments, its
outputs are uniformly distributed on some unknown interval [0, θ], so that

p(x | θ) =

{

1/θ if 0 ≤ x ≤ θ

0 otherwise

=
1

θ
I0,θ(x)

Here, I0,θ(x) denotes an indicator function which equals 1 when 0 ≤ x ≤ θ, and 0 otherwise.
We denote this distribution by X ∼ Unif(0, θ). To characterize the sensor’s sensitivity, we
would like to infer θ.

Question 3:

a) Given N i.i.d. observations D = (x1, . . . , xN ), Xi ∼ Unif(0, θ), what is the likelihood
function p(x | θ)? What is the maximum likelihood (ML) estimator for θ? Give an
informal proof that your estimator is in fact the ML estimator.

b) Suppose that we place the following prior distribution on θ:

p(θ) = αβαθ−α−1
Iβ,∞(θ)

This is known as a Pareto distribution. We denote it by θ ∼ Pareto(α, β). Plot the three
prior probability densities corresponding to the following three hyperparameter choices:
(α, β) = (0.1, 0.1); (α, β) = (2.0, 0.1); (α, β) = (1.0, 2.0).

c) If θ ∼ Pareto(α, β) and we observe N uniformly distributed observations Xi ∼ Unif(0, θ),
derive the posterior distribution p(θ | x). Is this a member of any standard family?

d) For the posterior derived in part (c), what is the corresponding MAP estimator of θ? How
does this compare to the ML estimator?
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e) Recall that the quadratic loss is defined as L(θ, θ̂) = (θ − θ̂)2. For the posterior derived
in part (c), what estimator of θ minimizes the posterior expected quadratic loss? Simplify
your answer as much as possible.

f) Suppose that we observe three observations x = (0.7, 1.3, 1.7). Determine the posterior
distribution of θ for each of the priors in part (b), and plot the corresponding posterior
densities. What is the MAP estimator for each hyperparameter choice? What estimator
minimizes the quadratic loss for each hyperparameter choice?

In this next question, we explore the geometry of the receiver operating characteristic
(ROC) curves discussed in lecture. Let Y = {0, 1} denote the two possible classes in a
binary categorization problem. For N observations xi of instances with true class labels yi,
and any decision rule ŷ(xi), recall the following definitions:

TP Total number of true positives, which occur when yi = 1, and ŷ(xi) = 1.

FP Total number of false positives, which occur when yi = 0, but ŷ(xi) = 1.

TN Total number of true negatives, which occur when yi = 0, and ŷ(xi) = 0.

FN Total number of false negatives, which occur when yi = 1, but ŷ(xi) = 0.

The ROC curve is then a plot of the expected values of the sensitivity or true positive rate,
TPR = TP/(TP+FN), versus the false alarm or false positive rate, FPR = FP/(FP+TN),
achieved by some family of decision rules for this dataset.

Our analysis is based on the concept of a randomized decision rule. Given two base
decision rules ŷ0(xi), ŷ1(xi), we classify each observation xi as follows:

• Sample zi ∼ Bernoulli(γ), for some fixed γ.

• Select decision ŷ1(xi) if zi = 1, or decision ŷ0(xi) if zi = 0.

Varying γ between 0 and 1 then creates a new family of decision rules.

Question 4:

a) Consider a randomized decision rule as above. Derive formulas for the TPR and FPR of
this decision rule as a function of γ, and the true positive and false positive rates of the
base decision rules.

b) Consider the diagonal ROC line for which TPR = FPR. Prove that a classifier which
achieves any performance on this line can always be constructed, regardless of the joint
distribution p(xi, yi).

c) A set Λ is convex if, for any α ∈ [0, 1] and λ0, λ1 ∈ Λ, (αλ0 + (1− α)λ1) ∈ Λ. Consider
a hypothetical family of decision rules for which the region under the ROC curve is not

convex. Argue that these rules must be sub-optimal, i.e. that there exists a decision rule
with equal FPR but higher TPR.
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d) Suppose you test a learned classifier on a validation set, and discover that the region under
the ROC is not convex. How could you construct a better classifier?

e) Suppose you test a learned classifier on a validation set, and discover that the FPR is
larger than the TPR. How could you construct a better classifier?
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