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Overview 

Discrete Output y ∈  1, … , 𝐾  

Continuous Output  𝑦 ∈ 𝑅 



Generative vs Discriminative 

• Generative methods model data . 

Discriminative models model boundaries 

between classes. 

• Models are trained differently 

– Generative models maximize the joint likelihood 

•  log 𝑝(𝑥𝑖 , 𝑦𝑖|𝜃)  
𝑁
𝑖=1  

– Discriminative models maximize the conditional 

likelihood 

•  log (𝑝(𝑦𝑖|𝑥𝑖 , 𝜃)
𝑁
𝑖=1   

 



K-NN classifier  

• “looks at” k points in the training set 

nearest to the test data instance. 

• 𝑝 𝑦 = 𝑐 𝑥, 𝐷𝑡𝐾 =
1

𝐾
 𝐼 𝑦𝑖 = 𝑐   𝑖∈𝑁𝑘 𝑥,𝐷𝑡 

  

• Defines a neighborhood Nk x,D𝑡  with a 

distance metric 𝑑(𝑥, 𝑥∗) 

• Non parametric – number of parameters 

can grow with data. 



Problems? 

• What happens with increasing 

dimensionality? 

 

• What happens with increasing data? 



Discriminant analysis 

• Continuous features 

• Each class is  fitted with a Gaussian 

Distribution 

• MLE estimate of the mean ? 

• MLE estimate of the covariance? 

• Generative or Discriminative? 

 



Logistic Regression Classifier 

• Parametric model with parameters w 

 

• Likelihood: 

– 𝑝 𝑦𝑛 𝑥𝑛, 𝑤 = Bernoulli(y|𝜎 𝑤𝑇𝑥 ) 

– 𝜎 𝑤𝑇𝑥 =
1

1+exp −𝑤𝑇𝑥
 

• Discriminative or Generative? 

 
 



Logistic Form 

• 𝑃 𝑦𝑛 = 1 𝑥𝑛, 𝑤 =
exp 𝑤𝑇𝑥

1+exp (𝑤𝑇𝑥)
 

• 𝑃 𝑦𝑛 = 0 𝑥𝑛, 𝑤 =    1 −
exp 𝑤𝑇𝑥

1+exp 𝑤𝑇𝑥
   

                                    =    
1

1+exp 𝑤𝑇𝑥
 

• Why this particular form? 

• LOR(x) = 

log  
𝑝 𝑦𝑛=1 𝑥𝑛,𝑤

𝑝 𝑦𝑛=0|𝑥𝑛,𝑤
= log exp wTx = wTx   

• Linear Decision Boundary 



Logistic Regression … 

• Predict  

– 𝑦𝑛 = 1 𝑖𝑓 𝑝 𝑦𝑛 = 1 𝑥𝑛, 𝑤 > 𝑝 𝑦𝑛 = 0 𝑥𝑛, 𝑤  

– 𝑤𝑇𝑥𝑛 > 0 

 

• Let’s say for a test point 𝑥∗, I have 

– 𝑤𝑇𝑥∗ =  10 + 100𝑥𝑖
∗  − 200𝑥𝑗 

∗ + 0 𝑥𝑘
∗   

 

 



Logistic Regression - 

Nonlinearities 
• Decision boundary is linear in data space.  

 

• Can add more flexibility 

– by applying a feature transform or basis 

function expansion 𝜙 𝑥  

– Decision surface now is 𝑤𝑇𝜙(𝑥)      

• Linear in 𝜙 𝑥  but potentially non linear in 𝑥 

 



Multiclass Extension 

• 𝑝 𝑦𝑛 𝑥𝑛, 𝑤 = Cat(yn|𝑆 𝑊
𝑇𝑥 ) 

 

• 𝑆𝑐 𝑊
𝑇𝑥 =

exp 𝑤𝑐
𝑇𝑥

 exp 𝑤𝑘
𝑇𝑥   𝑘

 

 

 

 



Naïve Bayes Classifier  

• Naïve Bayes assumes conditional 

independence amongst features given 

class labels. 

–  𝑥𝑛𝑖 ⊥ 𝑥𝑛𝑗  | 𝑦 ; 𝑗 ≠ 𝑖  

• Model 

– 𝑝 𝑋, 𝑌 𝜃 =  𝑝 𝑦𝑛 𝜃   𝑝(𝑥𝑛𝑗 , |𝑦𝑛, 𝜃)
𝑀
𝑗  

– 𝜃 = Model Parameters 

• Generative or Discriminative? 



Regression 

• Continuous output  

 

Linear Regression 

• Output real-valued so we replace Bernoulli 

with Gaussian, 

       p(y|x,θ) = N(y|wT(x),σ2) 

• Equivalent to, 

   y = wT(x) + ε,         where  ε ~ N(0,σ2) 



Regression 

Linear Regression (cont’d) 

• ML estimate wML yields least squares 

solution 

 

 

• Where    is our model matrix 

 

• Solution is unique global optimum 

y 



Decision Theory 

Goal: compute decision procedure 

to minimize expected loss 

 

• In Bayesian approach we minimize 

posterior expected loss 



Decision Theory 

Loss Functions: 

• We are free to choose any loss function 

• MAP estimate minimizes 0-1 loss: 

 

 

 

• Plugging into           yields 

                                            p(a=y|x) 

                                           ,     (MAP) 



Decision Theory 

Loss Functions (cont’d): 

• Posterior mean minimizes L2 loss, 

 

• Plug into expected loss, 

 

 

 

 

• Posterior median minimizes L1 loss 



Decision Theory 

Loss Functions (cont’d): 

• Consider loss matrix 

                                  , LFN – False Negative 

                                       , LFP – False Positive 

 

• Posterior expected loss is 

 

• So we pick class        iff 

 

                           =  η 

 

Can trace out ROC curve  

By varying η 


