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Continuous Discrete

Overview

Supervised Learning

classification or
categorization

Discrete Outputy € { 1, ..., K}

regression

Continuous Output y € R

Unsupervised Learning

clustering

dimensionality
reduction




Generative vs Discriminative

 Generative methods model data .

Discriminative models model boundaries
between classes.

* Models are trained differently
— Generative models maximize the joint likelihood
o YiLilogp(x; yi16)

— Discriminative models maximize the conditional
likelihood

e ¥ log(p(yilxi, 0)



K-NN classifier

“looks at” k points in the training set
nearest to the test data instance.

1
p(y = clx, DiK) = EZieNk(x,Dt)I(yl' = ¢)
Defines a neighborhood Ny p,) with a
distance metric d(x, x™)

Non parametric — number of parameters
can grow with data.



Problems?

* What happens with increasing
dimensionality?

* What happens with increasing data?



Discriminant analysis

Continuous features

Each class is fitted with a Gaussian
Distribution

MLE estimate of the mean ?
MLE estimate of the covariance?
Generative or Discriminative?



Logistic Regression Classifier

« Parametric model with parameters w

* Likelihood:

- p(y,,|x,,, w) = Bernoulli(y|oc(w’x))
1
{1+exp(—-wTx)}

-owlx) =

 Discriminative or Generative?



Logistic Form

. B _ exp(wlx)
P(n = 1lxn, w) = 1+exp(wTx)
. B - exp(wlx)
P(n = 0lxy,w) = 1 1+exp(wTx)
1
 1+expwTx)
* Why this particular form?
 LOR(X) =
1 Pn=1xpw) T R \
log S o) log (exp(w X)) = W X
* Linear Decision Boundary




Logistic Regression ...

 Predict

-y, = 1if p(yp = 1lx,, w) > p(y, = 0lx,, w)
-wlx, >0

» Let's say for a test point x*, | have
-w'x* = 10 + 100x; — 200x; + 0 xy



Logistic Regression -
Nonlinearities
* Decision boundary is linear in data space.

« Can add more flexibility

— by applying a feature transform or basis
function expansion ¢(x)

— Decision surface now is w! ¢ (x)
* Linear in ¢(x) but potentially non linear in x



Multiclass Extension

* p(lxn, w) = Cat(y,|S(W'x))

exp(wl x)
% exp(wy x)

e S.(WTx) =




Nalve Bayes Classifier

* Naive Bayes assumes conditional
Independence amongst features given
class labels.

= XngLXp |yij#i

* Model
- p(X,Y10) = [Tpn10) I} p(xnj |yn, 6)
- 8 = Model Parameters

* Generative or Discriminative?



Regression

« Continuous output y € RY

Linear Regression

* Qutput real-valued so we replace Bernoulli
with Gaussian,
p(y[x,0) = N(y|w'¢(x),o?)
* Equivalent to,
y =wWTé(X) + ¢, where ¢~ N(0,5°)




Regression

Linear Reqgression (cont’d)

« ML estimate w,, yields least squares
solution

Wi, = (‘I’FL(I’)_I ‘I’ly

« Where ® |s our model matrix

 Solution is unigue global optimum



Decision Theory

Goal: compute decision procedure
to minimize expected loss ¢ : ¥ — A

* |[n Bayesian approach we minimize
posterior expected loss

/_)(B_‘X?ﬂ') = Eg_)(8|x,rr) {L(Q a)} — / L(Q a)p(e‘xaﬂ)dﬁ)

&)



Decision Theory

Loss Functions:
* We are free to choose any loss function

 MAP estimate minimizes 0-1 loss:

0 ifa=2~0
L(6,a) =1(0 # a) =
{1 if @ £ 0
* Plugging intop(a|x) yields
plalx) = pla # y|x) = 1 — p@=ylx)
y*(x) = argmax p(y|x),  (MAP)

(TAS



Decision Theory

Loss Functions (cont'd):
 Posterior mean minimizes L2 loss,

-
L]

L(6,a) = (6 —a)?
* Plug into expected loss,

plalx) = E[(0 —a)?x] =E [0%x] — 2aE [0|x] + @’
0

a ' — _f) c) [—

da [J((I‘X) 21K [H‘X} -+ 2d 0

= a = E|0|x] = / Op(0|x)d6b

 Posterior median minimizes L1 loss



Decision Theory

Loss Functions (cont'd):
. Consider loss matrix

gj=1 §=0 , Ley — False Negative
y=1| 0  Lpy , Lep — False Positive
y=01| Lpp 0
» Posterior expected loss Is
ply=0|x) = Lpn xply=1]x)
pli=1x) = Lpp xply =0lx)

* S0 we pick class i =1iff
ply =0|x) > ply=1x)
ply = 1]x) _ Lpp
ply=0|x) =~ Lpn — n «

Can trace out ROC curve
By varying n




