Sparsity

* L2 regularization
— Sparsity - ?
— Optimization — Easy
* L1 regularization o
— Sparsity - ? o

— Optimization — more difficult, not differentiable.

* Huber regularization
— Robust to outliers
— Optimization — Easy, differentiable everywhere



Kernel Methods

* Kernel function: k(x;, x;)
—k:ix*xx >R x€x
— Usually Symmetric, Non-negative
— Measure of similarity between x and x’

* A kernel is positive semi definite

k(xy,%xy) - K(x,xy)
Gram

Matrix
H(KI‘\"*XI) . H(K,‘\..XJ‘\.]

if it gives rise to PSD gram matrix for any N



Kernel Methods

e Mercer’s theorem

— Loosely speaking it states that every PD kernel can
be expressed as

¢ (x) could be infinite
dimensional

k(x,x') = o(x)" o(x')

* For certain kernels (e.g., polynomial) ¢(x) is
finite.

(1+xTx)? = (14 z12) + 297h)°

- ¢ 2 2,
= 142z 2] + 2w50), + (zy71)° + (2275)° + 272 297,

d(x) = [1,V2ry, V2rs, 22, 22, V2r 1 25]T



Gaussian Process

GP is a collection of random variables, any finite
number of which are jointly Gaussian.

f(x) ~ GP(m(x), k(x,x'))




Gaussian Process Models

© p. 1) =IOl f)

 Regression:y; = f; + ;¢ ~ N(0,0%)
:p(yilf;) = N(0,0°I)

* Classification:y; = +1

pilfi) = ¢(ifi)



Prediction

« p(ulx, v, x) = [ plfOp(flx, y, x.)df.

» p(filx, y,x.) = | p(flx, yIp(flx, f, x.)df

/N

Regression Classification = Non —
= Gaussian Gaussian, needs
approximations



Laplace Approximation

* p(flx, y) = N(f|m, X)

— Laplace approximation — Taylor series
approximation of the log posterior around the
mode.

—m =fmode
— ¥ = H 1 at the mode.



Support Vector Machines

Maximize Margin between classes

Data instances closest to the decision boundary are the support
vectors.

Dual weights of all but SVs =0



Topic Models
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- Each document is a mixture of topics.

- Each topic is a cluster, with a distribution over words.

- All documents share the same topics, but the mixing
proportions are different.



Gibbs Sampling

9 w~Dir(@y ° For Gibbs Sampling we

©

z; ~ Cat(m)

Zj

Xi ~ f(HZi)

nheed

zi ~p(zi |z_;,x,m,0,a,2)
= p(zi|x;, m, 0)
o¢ p(z;|m) f (x:]62:)

~p(l|zx,6,a,l)
< p(Il, z|a)

Or ~ Ok 10_1, 11, x, a, 1)

= p(Ok|xm:{zm =k}, 1)
X p(xm, Hkl/l)



Mixture Models

 Defined as a convex 1t
combination of probability .o

distributions
05¢

mE‘Q Z TEPE mz‘Q

e For z; e R’ wvi=1,... N

. . 0 05 1
° Where the m IXtu re Welg hts Figure 1: Example 500 points drawn frpm a
Z L = 1 and T, 2 0 three component Gaussian mixture. (Bishop)



Mixture Models

e.g. (Mixture of Bernoulli)

D-dimensional binary vectors which represent
“coinflips”

x;, . DBinary variables:=1,...,D
Conditional distribution:
i | pi ~ Ber(p;)

Mixture distribution for k=1,... K clusters:

K D
p(lp, ) =Y m [ | pgi(l = pra)'
k=1 =1



Expectation Maximization

* Exploits interpretation that ML/MAP would be
“easy’ if data were fully observed

* Constructs a lower bound on log-likelihood
logp(z | 8) > E, [log p(x, 2 | 6)] + H(q)

where z Is missing data, expectation is over ¢g(z)
and H(q) Is entropy

* Terminology:
logp(x | 8) : Marginal Likelihood
logp(xz,218) : Complete data log-likelihood
E, [logp(x, 2| 68)] : Expected complete data log-likelihood



Expectation Maximization

E-Step:

For iteration (i):
Compute: ¢¥(z) =p(z |z, 00 1)
Evaluate sufficient statistics of: E . [logp(z, 2 | 6)]

M-Step:

Update parameter estimate:

01 = argmax B [log p(z, 2 | 0)



Dimensionality Reduction

Principle Component Analysis: //

 Orthogonal projection onto NNPZAN
lower dimensional linear /
subspace, known as principle A,
subspace /

* Projection maximizes variance ..., come sopctin .

2D data X down to 1D

° GOaI Represent hlgh representation. (Bishop)
dimensional data =z ¢ R”
by 2 e RM where M << D




Dimensionality Reduction

e Step 1:
Compute sample mean / variance:
1 X 1 N
:ﬁz_: § = > (@ — w)(zn — )"

n=1

o Step 2:
Compute M eigenvectors of S with largest
eigenvalues U = (uy,uq, ..., )

o Step 3:
Project to low dimension: =z, = 21U




Dimensionality Reduction

i
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Figure 3: lllustration of the generative process of PPCA for two dimensional data and a
one dimensional projection. (Bishop)

Probabilistic PCA (PPCA):
o Probabilistic extension of PCA

« Models high dimensional data as “noisy” projections of
low dimensional data

« Assumes spherical Gaussian variance



Dimensionality Reduction

« PPCA models projection as,
r=Wz+pu+ce

2~ N(0,T)
e ~ N(0,0%Ip)
x| 2~ NWz+u o%lp)

where,

* Need to learn parameters 1 and ¢°

* Closed form ML solution available, but can use
EM if sample covariance is too large



Dimensionality Reduction

Factor Analysis (FA):

« Similar to PPCA, but allows diagonal covariance
|z~ NWz+ u, W)

* No closed form ML solution for parameters, can
use EM.

 Note:

* In PPCA & FA all rotations of input have the same
Ikelihood (e.g. basis is not meaningful)

* In FA all element-wise rescalings of input have equal
Ikelihood (good for data at different scales, e.qg.
iInches vs. feet)




Hidden Markov Model

——

Figure 4: Example HMM for latent state X and observations Y

 Used to model sequential data
where =, depends only on z;

e Used as extension to mixture model where
mixture assignments are not iid, but ordered

* Defined by:
p(xs | 2.—1) : Transition probability

p(y: | 2;) :  Emission probability



Forward Backward

* Used to perform inference in HMMSs
 Compute forward/backward messages

a(x:) = p(xe,y1,...,yr) - Forward message

B(xe) = p(Yer1,. .., Ye | 2¢) :  Backward message

« Compute messages recursively as,
alze) = plys | @) > olwe1)p(we | 36-1)

Et—1

Blzt) = Z B(xer1)p(yirt | Zer1)p(@er1 | 2¢)

Tl

* Multiply them to yield posterior marginals,
plxe | y1,. -, y7) o< alzy) B(xy)
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