
Sparsity 

• L2 regularization 

– Sparsity - ? 

– Optimization – Easy 

• L1 regularization 

– Sparsity - ? 

– Optimization – more difficult, not differentiable.  

• Huber regularization 

– Robust to outliers 

– Optimization – Easy, differentiable everywhere  

 

 

 



Kernel Methods 
• Kernel function: 𝑘(𝑥𝑖 , 𝑥𝑗) 

– 𝑘 ∶ 𝜒 ∗ 𝜒 → 𝑅;   𝑥𝑖 ∈ 𝜒  

– Usually Symmetric, Non-negative 

– Measure of similarity between x and x’ 

• A kernel is positive semi definite  

 

 

      

if it gives rise to PSD gram matrix for any N 

Gram 
Matrix 



Kernel Methods 

• Mercer’s theorem 

– Loosely speaking it states that every PD kernel can 
be expressed as  

 

 

• For certain kernels (e.g., polynomial) 𝜙 𝑥  is 
finite. 

 

 

 

 

𝜙 𝑥  could be infinite 
dimensional 



Gaussian Process 

GP is a collection of random variables, any finite 
number of which are jointly Gaussian. 



Gaussian Process Models 

• 𝑝(𝒚, 𝒇|𝒙) = 𝑝(𝒇|𝒙)∏𝑝(𝑦𝑖|𝑓𝑖) 
 

• Regression : 𝑦𝑖 = 𝑓𝑖 + 𝜖; 𝜖 ∼ 𝑁 0, 𝜎2  

: p(𝑦𝑖 𝑓𝑖 = 𝑁 0, 𝜎2𝐼  

 

• Classification : 𝑦𝑖 =  ±1 

                            : 𝑝(𝑦𝑖 𝑓𝑖 = 𝜙(𝑦𝑖𝑓𝑖)  

 



Prediction 

• 𝑝 𝑦∗ 𝒙, 𝒚, 𝑥∗ = ∫ 𝑝 𝑦∗ 𝑓∗ 𝒑 𝑓∗ 𝒙, 𝒚, 𝑥∗ 𝑑𝑓∗ 

 

• 𝑝 𝑓∗ 𝒙, 𝒚, 𝑥∗ = ∫ 𝑝 𝒇 𝒙, 𝒚 𝒑 𝑓∗ 𝒙, 𝒇, 𝑥∗ 𝒅𝒇 

 

Regression 
= Gaussian 

Classification = Non – 
Gaussian, needs 
approximations 



Laplace Approximation 

• 𝑝 𝒇 𝒙, 𝒚 ≈ 𝑁(𝒇|𝒎, 𝚺) 

– Laplace approximation – Taylor series 
approximation of the log posterior around the 
mode. 

– 𝒎 = 𝒇mode 

– 𝚺 = H−1 at the mode. 

 



Support Vector Machines 

- Maximize Margin between classes 
- Data instances closest to the decision boundary are the support 

vectors. 
- Dual weights of all but SVs = 0 



Topic Models 

- Each document is a mixture of topics. 
- Each topic is a cluster, with a distribution over words. 
- All documents share the same topics, but the mixing 
   proportions are different. 



Gibbs Sampling 

𝑥𝑖 

𝜆 

𝜃𝑘 

Π 
 

𝑧𝑖  

𝛼 

N 
K 

𝜋 ∼ 𝐷𝑖𝑟 𝛼  

𝑧𝑖 ∼ 𝐶𝑎𝑡 𝜋  

𝑥𝑖 ∼ 𝑓 𝜃𝑧𝑖
 

𝜃𝑘 ∼ 𝑔 𝜆  

𝑧𝑖 ∼ 𝑝 𝑧𝑖  𝑧−𝑖 , 𝑥, 𝜋, 𝜃, 𝛼, 𝜆) 
= 𝑝 𝑧𝑖 𝑥𝑖 , 𝜋, 𝜃

∝ 𝑝 𝑧𝑖 𝜋 𝑓(𝑥𝑖|𝜃𝑧𝑖) 
 

• For Gibbs Sampling we 
need 

Π ∼ 𝑝 Π 𝑧, 𝑥, 𝜃, 𝛼, 𝜆)
∝ 𝑝(Π, 𝑧|𝛼) 

 
𝜃𝑘 ∼ 𝑝 𝜃𝑘 𝜃−𝑘 , Π, 𝑥, 𝛼, 𝜆)

= 𝑝(𝜃𝑘 𝑥𝑚: 𝑧𝑚 = 𝑘 , 𝜆  
∝ 𝑝(𝑥𝑚, 𝜃𝑘|𝜆) 

 
 



  

Mixture Models

● Defined as a convex 
combination of probability 
distributions,

● For
● Where the mixture weights

                and  
Figure 1: Example 500 points drawn from a 
three component Gaussian mixture. (Bishop)



  

Mixture Models

e.g. (Mixture of Bernoulli)

D-dimensional binary vectors which represent   
“coinflips”

Conditional distribution:

Mixture distribution for k=1,...,K clusters:



  

Expectation Maximization

● Exploits interpretation that ML/MAP would be 
“easy” if data were fully observed

● Constructs a lower bound on log-likelihood

where z is missing data, expectation is over q(z) 
and H(q) is entropy

● Terminology: 



  

Expectation Maximization

E-Step:

For iteration (i): 

  Compute: 

  Evaluate sufficient statistics of:

M-Step:

Update parameter estimate: 



  

Dimensionality Reduction

Principle Component Analysis:
● Orthogonal projection onto 

lower dimensional linear 
subspace, known as principle 
subspace

● Projection maximizes variance
● Goal: Represent high 

dimensional data 
by

Figure 2: Example projection of 
2D data X down to 1D 
representation. (Bishop)



  

Dimensionality Reduction

● Step 1:

Compute sample mean / variance:

● Step 2:
Compute M eigenvectors of S with largest 
eigenvalues

● Step 3:
Project to low dimension: 



  

Dimensionality Reduction

Probabilistic PCA (PPCA):
● Probabilistic extension of PCA
● Models high dimensional data as “noisy” projections of 

low dimensional data
● Assumes spherical Gaussian variance

Figure 3: Illustration of the generative process of PPCA for two dimensional data and a 
one dimensional projection. (Bishop)



  

Dimensionality Reduction

● PPCA models projection as,

where,

● Need to learn parameters     and 
● Closed form ML solution available, but can use 

EM if sample covariance is too large



  

Dimensionality Reduction

Factor Analysis (FA):
● Similar to PPCA, but allows diagonal covariance

● No closed form ML solution for parameters, can 
use EM.

● Note: 
● In PPCA & FA all rotations of input have the same 

likelihood (e.g. basis is not meaningful)
● In FA all element-wise rescalings of input have equal 

likelihood (good for data at different scales, e.g. 
inches vs. feet)



  

Hidden Markov Model

● Used to model sequential data 
where    depends only on 

● Used as extension to mixture model where 
mixture assignments are not iid, but ordered

● Defined by:

Figure 4: Example HMM for latent state X and observations Y



  

Forward Backward

● Used to perform inference in HMMs
● Compute forward/backward messages

 
● Compute messages recursively as,

● Multiply them to yield posterior marginals,
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