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Many figures courtesy Kevin Murphy’s textbook, 
Machine Learning: A Probabilistic Perspective 



Gaussian Mixture Models 

Mixture of 3 Gaussian 
Distributions in 2D 

Contour Plot of Joint Density, 
Marginalizing Cluster Assignments 



Gaussian Mixture Models 

Surface Plot of Joint Density, 
Marginalizing Cluster Assignments 



Fitting Gaussian Mixtures 

C. Bishop, Pattern Recognition & Machine Learning 

Complete Data Labeled 
by True Cluster Assignments 

Incomplete Data: 
Points to be Clustered 



Collections of Mixture Models 
•! Standard mixture models assume a single, “flat” dataset 
•! Many applications involve multiple related, but distinct, 

 “groups” of data 
•! Multiple documents in a text corpus 
•! Multiple images in a photo repository 
•! Multiple users with their own spam filtering decisions 
•! Multiple hospitals in a clinical trial 
•! Multiple companies in a financial market 

•! How can we jointly model this data? 

•! Lumping into single large dataset ignores group differences 
•! Modeling groups independently can be ineffective, 

especially when limited data about any one group 
•! Hierarchical Bayesian models share between groups 



Multiple Gaussian Mixtures 

J=2 Groups of Data 

Each observation comes from 
some mixture component 

Each group has its own weight 
on shared mixture parameters 

Use data to learn set of shared 
mixture identities, and their 
frequencies across groups 



Probabilistic Topic Models: 
Multiple Multinomial Mixtures 



Geometry of Topic Models 
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=   generated
document

=   topic

 
•! Documents are multinomial distributions over some 

predefined vocabulary of (tens of thousands) of words 
•! Topics are multinomial distributions on same vocabulary 
•! Generative model:  Each document is (nearly) a convex 

combination of the topic distributions 



Speech Recognition 
•! Given an audio 

waveform, robustly 
extract & recognize 
any spoken words 

•! Statistical models 
can be used to 
!! Provide greater 

robustness to noise 
!! Adapt to accent of 

different speakers 
!! Learn from training 

S. Roweis, 2004 



Target Tracking 

Radar-based tracking 
of multiple targets 

Visual tracking of 
articulated objects 

(L. Sigal et. al., 2006) 

•! Estimate motion of targets in 3D world from 
indirect, potentially noisy measurements 



Robot Navigation: SLAM 
Simultaneous Localization and Mapping 

CAD 
Map 

Estimated 
Map 

Landmark 
SLAM 

•! As robot moves, estimate its 
pose & world geometry 

(S. Thrun, 
San Jose Tech Museum) 

(E. Nebot, 
Victoria Park) 



Financial Forecasting 

•! Predict future market behavior from historical 
data, news reports, expert opinions, … 

http://www.steadfastinvestor.com/ 



Special Guest Slides 
•!David Blei on Latent Dirichlet Allocation 
•!Mark Johnson on Hidden Markov Models 



A gentle introduction to

Hidden Markov Models

Mark Johnson
Brown University

November 2009
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Sequence labeling
• Input: a sequence x = (x1, . . . , xn) (usually n may vary)
• Output: a sequence y = (x1, . . . , yn), where yi is a label for xi

Part of speech (POS) tagging:

y :
x :

DT
the

JJ
big

NN
cat

VBD
bit

NNP
Sam

.

.

Noun-phrase chunking:

y :
x :

[NP
the

NP
big

NP]
cat bit

[NP]
Sam

.

.

Named entity detection:

y :
x :

[CO
XYZ

CO]
Corp. of

[LOC]
Boston announced

[PER]
Spade’s resignation

Speech recognition: The x are 100 msec. time slices of acoustic input,
and the y are the corresponding phonemes (i.e., yi is the
phoneme being uttered in time slice xi)
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Sequence labeling with probabilistic models

• General idea: develop a probabilistic model P(y,x)
I use this to compute P(y|x) and ŷ(x) = argmaxy P(y|x)

• A Hidden Markov Model (HMM) factors:

P(y,x) = P(y) P(x|y)

• P(y) is the probability of sequence y
I In an HMM, P(y) is a Markov chain

– in applications, y is usually “hidden”

I P(x|y) is the emission model.
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Markov models of sequences
• Let y = (y1, . . . , yn), where yi ∈ Y and n is fixed

P(y) = P(y1) P(y2|y1) P(y3|y1, y2) . . . P(yn|y1, . . . , yn−1)

= P(y1)
n∏

i=2

P(yi |y1:i−1)

where yi :j is the subsequence (yi , . . . , yj) of y
• In a (first-order) Markov chain:

P(yi |y1:i−1) = P(yi |yi−1) for i > 1

• In a homogenous Markov chain, P(yi |yi−1) does not depend on i ,
so probability of a sequence is completely determined by:

P(y1) = ι(y1) (start probabilities)

P(yi |yi−1) = σ(yi−1, yi) (transition probabilities), so:

P(y) = ι(y1)
n∏

i=2

σ(yi−1, yi)
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Markov models of varying-length sequences
• To define a model of sequences y = (y1, . . . , yn) of varying lengths

n, need to define P(n)
• An easy way to do this:

I add a new end marker symbol ‘/’ to Y
I pad all sequences with this end-marker

y = y1, y2, . . . , yn, /, /, . . .

I set σ(/, /) = 1, i.e., / is a sink state
I so σ(y , /) is probability of sequence ending after state y

• We can also incorporate the start probabilities ι into σ by
introducing a new begin marker y0 = .

y = ., y1, y2, . . . , yn, /, /, . . . , so:

P(y) =
∞∏
i=1

σ(yi−1, yi) (only compute to i = n + 1)
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Hidden Markov models

• An HMM is specified by:
I A state-to-state transition matrix σ, where σ(y , y ′) is the

probability of moving from state y to state y ′

I A state-to-observation emission matrix τ , where τ(y , x) is the
probability of emitting x in state y

P(y,x) = P(y) P(x|y)

P(y) =
n+1∏
i=1

P(yi |yi−1) =
n+1∏
i=1

σ(yi−1, yi)

P(x|y) =
n∏

i=1

P(xi |yi) =
n∏

i=1

τ(yi , xi)

• I.e., each xi is generated conditioned on yi with probability τ(yi , xi)
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HMMs as stochastic automata

D
the 0.7
a 0.3

V
buy 0.4
eat 0.3
flour 0.2
pan 0.1

/

N
buy 0.2
flour 0.4
pan 0.4

.

0.3

0.3

0.4

0.4
0.3

0.3

0.3

0.3

0.4
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Bayes net representation of an HMM

Y0 = / Y1 = V

X1 = flour X2 = the

Y3 = N

X3 = pan

Y4 = /Y2 = D
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Trellis representation of HMM

Y1 = N

Y1 = V Y2 = V

Y2 = N

Y3 = /Y0 = .

X1 = flour X2 = pan

• The trellis representation represents the possible state sequences y
for a single observation sequence x

• A trellis is a DAG with nodes (i , y), where i ∈ 0, . . . , n + 1 and
y ∈ Y and edges from (i − 1, y ′) to (i , y)

• It plays a crucial role in dynamic programming algorithms for
HMMs
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Two important inference problems

• Given an HMM σ, τ and an observation sequence x:
I what is the most likely state sequence ŷ = argmaxy P(x,y)?
I what is the probability of a sequence P(x) =

∑
y P(x,y)?

• If the sequences are short enough, can be solved by exhaustively
enumerating y

• Given a sequence of length n and an HMM with m states, can be
solved using dynamic programming in O(n m2) time
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Key observation: P(x,y) factorizes!

P(x,y) =

(
n∏

i=1

σ(yi−1, yi) τ(yi , xi)

)
σ(yn, /), so:

− log P(x,y) =

(
n∑

i=1

− log(σ(yi−1, yi) τ(yi , xi))

)
− log σ(yn, /)

• Given observation sequence x, define a trellis with edge weights

w((i − 1, y ′), (i , y)) = − log(σ(yi−1, yi) τ(yi , xi))

w((n, y), (n + 1, /)) = − log(σ(y , /))

• Then the − log probability of any state sequence y is the sum of
the weights of the corresponding path in the trellis
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Finding the most likely state sequence ŷ

• Goal: find ŷ = argmaxy P(x,y)

• Algorithm:
I Construct a trellis with edge weights

w((i − 1, y ′), (i , y)) = − log(σ(yi−1, yi ) τ(yi , xi ))

w((n, y), (n + 1, /)) = − log(σ(y , /))

I Run a shortest path algorithm on this trellis, which returns a state
sequence with lowest − log probability
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The Viterbi algorithm for finding ŷ
• Idea: given x = (x1, . . . , xn), let µ(k , u) be the maximum

probability of any state sequence y1, . . . , yk ending in yk = u ∈ Y .

µ(k , u) = max
y1:k : yk=u

P(x1:k ,y1:k)

I Base case: µ(0, .) = 1
I Recursive case:

µ(k, u) = max
u′

µ(k − 1, u′)σ(u′, u) τ(u, xk)

I Final case: µ(n + 1, /) = maxu′ µ(n, u′)σ(u′, /)

• To find ŷ, for each trellis node (k , u) keep a back-pointer to most
likely predecessor

ρ(k , u) = argmax
u′∈Y

µ(k − 1, u′)σ(u′, u) τ(u, xk)
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Why does the Viterbi algorithm work?

µ(k , u) = max
y1:k : yk=u

P(x1:k ,y1:k)

= max
y1:k : yk=u

k∏
i=1

σ(yi−1, yi) τ(yi , xi)

= max
y1:k−1

(
k−1∏
i=1

σ(yi−1, yi) τ(yi , xi)

)
σ(yk−1, u) τ(u, xk)

= max
u′

(
max

y1:k−1 : yk−1=u′

k−1∏
i=1

σ(yi−1, yi) τ(yi , xi)

)
σ(u′, u) τ(u, xk)

= max
u′

µ(k − 1, u′)σ(u′, u) τ(u, xk)
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The sum-product algorithm for computing P(x)
• Goal: compute P(x) =

∑
y∈Yn P(x,y)

• Idea: given x = (x1, . . . , xn), let α(k , u) be the sum of the
probabilities of x1, . . . , xk and all state sequences y1, . . . , yk ending
in yk = u.

α(k , u) =
∑

y1:k : yk=u

P(x1:k ,y1:k)

I Base case: α(0, .) = 1
I Recursive case: for k = 1, . . . , n:

α(k , u) =
∑
u′

α(k − 1, u′)σ(u′, u) τ(u, xi )

I Final case: α(n + 1, /) =
∑

u′ α(n, u′)σ(u′, /)

• The α are called forward probabilities
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Estimating HMMs from visible data

• Training data: D = ((x1,y1), . . . , (xn,yn)), where the xi and yi

are sequences
I for conceptual simplicity, assume that the data comes as two long

sequences D = (x,y)

• Then the MLE is:

σ̂(y ′, y) =
c(y ′, y)∑

y∈Y c(y ′, y)

τ̂(y , x) =
c(y , x)∑

x∈X c(y , x)
, where:

c(y ′, y) = the number of times state y ′ precedes state y in y

c(y , x) = the number of times state y emits x in (x,y)
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Estimating HMMs from hidden data using EM

• EM iteration at time t:

σ(y ′, y)
(t)

=
E[c(y ′, y)]∑

y∈Y E[c(y ′, y)]

τ(y , x)(t) =
E[c(y , x)]∑

x∈X E[c(y , x)]
, where:

E[c(y ′, y)] =
∑
y∈Yn

c(y ′, y) P(y|x,σ(t−1), τ (t−1))

E[c(y , x)] =
∑
y∈Yn

c(y , x) P(y|x,σ(t−1), τ (t−1))

• Key computational problem: computing these expectations
efficiently

• Dynamic programming to the rescue!
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Expectations require marginal probabilities

• Suppose we could efficiently compute the marginal probabilities:

P(Yi = y ′|x) =

∑
y∈Yn : yi=y ′ P(y,x)

P(x)

• Then we could efficiently compute:

E[c(y ′, x ′)] =
∑

i : xi=x ′

P(Yi = y ′|x)

• Efficiently computing E[c(y ′, y)] requires computation of a
different marginal probability
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Backward probabilities

• Idea: given x = (x1, . . . , xn), let β(k , v) be the sum of the
probabilities of xk+1, . . . , xn and all state sequences yk+1, . . . , yn

conditioned on yk = v .

β(k , v) =
∑

yk:n : yk=v

P(xk+1:n,yk+1:n|Yk = v)

I Base case: β(n, v) = σ(v , /) for each v ∈ Y
I Recursive case: for k = n − 1, . . . , 0:

β(k, v) =
∑
v ′

σ(v , v ′) τ(v ′, xk+1)β(k + 1, v ′)

• The β are called backward probabilities
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Computing marginals from forward and backward

probabilities

P(Yi = u|x) =
1

P(x)

∑
y∈Yn : yi=u

P(y,x)

=
1

P(x)

∑
y1:k : yi=u

∑
yi :n : yi=u

P(x1:i ,y1:i)P(xi+1:n,yi :n)

=
1

P(x)

( ∑
y1:k : yi=u

P(x1:i ,y1:i)

)( ∑
yk:n : yi=u

P(xi+1:n,yi :n)

)

=
1

P(x)
α(i , u) β(i , u)

• So the marginal P(Yi |x) can be efficiently computed from α and β
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Conclusion

• Hidden Markov Models (HMMs) can be used to label a sequence
of observations

• There are efficient dynamic programming algorithms to find the
most likely label sequence and the marginal probability of a label

• The expectation-maximization algorithm can be used to learn an
HMM from unlabeled data

• The expected values required for EM can be efficiently computed
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