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Gaussian Mixture Models
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Gaussian Mixture Models

Surface Plot of Joint Density,
Marginalizing Cluster Assignments



Fitting Gaussian Mixtures
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Collections of Mixture Models

« Standard mixture models assume a single, “flat” dataset
« Many applications involve multiple related, but distinct,
“groups” of data
« Multiple documents in a text corpus
* Multiple images in a photo repository
« Multiple users with their own spam filtering decisions
« Multiple hospitals in a clinical trial
« Multiple companies in a financial market
« How can we jointly model this data?

« Lumping into single large dataset ignores group differences

« Modeling groups independently can be ineffective,
especially when limited data about any one group

» Hierarchical Bayesian models share between groups



Multiple Gaussian Mixtures
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Probabilistic Topic Models:
Multiple Multinomial Mixtures

Pr|topic | doc]
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Geometry of Topic Models

1 n P(wordl)

® = topic

O = observed
document

® = generated
document

I P(word2)

, P(word3)

* Documents are multinomial distributions over some
predefined vocabulary of (tens of thousands) of words
 Topics are multinomial distributions on same vocabulary
* Generative model: Each document is (nearly) a convex

combination of the topic distributions



Speech Recognition

 Given an audio ]\
waveform, robustly @

extract & recognize —— -
any spoken words WMWM

» Statistical models , 1 ‘
can be used to bl

» Provide greater
robustness to noise

» Adapt to accent of MMWW“W\N\/\W
different speakers

> Learn from training | ol MWW

S. Roweis, 2004
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Radar-based tracking Visual tracking of
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(L. Sigal et. al., 2006)

» Estimate motion of targets in 3D world from
iIndirect, potentially noisy measurements



Robot Navigation: SLAM

Simultaneous Localization and Mapping
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* As robot moves, estimate its
pose & world geometry




Financial Forecasting
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 Predict future market behavior from historical
data, news reports, expert opinions, ...



Special Guest Slides

 David Blei on Latent Dirichlet Allocation
 Mark Johnson on Hidden Markov Models



A gentle introduction to
Hidden Markov Models

Mark Johnson
Brown University

November 2009



Outline

What is sequence labeling?
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Sequence labeling

e Input: a sequence = (xq,...,X,) (usually n may vary)

e Output: a sequence y = (x1,...,¥n), Where y; is a label for x;
Part of speech (POS) tagging:

y: DT JJ NN VBD NNP.
x : the big cat bit Sam .

Noun-phrase chunking:
y: [NP NP NP] _ [NP]
x: the Dbig cat bit Sam
Named entity detection:

y: [CO CO] _ [LOC] _ [PER] _
x: XYZ Corp. of Boston announced Spade’s resignation
Speech recognition: The @ are 100 msec. time slices of acoustic input,
and the y are the corresponding phonemes (i.e., y; is the

phoneme being uttered in time slice x;)
3/27



Sequence labeling with probabilistic models

e General idea: develop a probabilistic model P(y, x)
> use this to compute P(y[z) and §(x) = argmax,, P(y|z)
e A Hidden Markov Model (HMM) factors:

P(y,z) = P(y)P(z|y)

e P(y) is the probability of sequence y
» In an HMM, P(y) is a Markov chain
— in applications, y is usually “hidden”
» P(x|y) is the emission model.

27



Outline

Markov models
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Markov models of sequences
o Let y = (y1,...,¥n), where y; € Y and n is fixed
P(y) = P(a)POelyn)Plyslyr, v2) - P(alyis - Ya-1)
= Pn) [[PWilyri-a)

i=2
where y;; is the subsequence (y;,...,y;) of y
e In a (first-order) Markov chain:

P(yilyi.i-1) = P(yilyi—1) for i >1

e In a homogenous Markov chain, P(y;|y;—1) does not depend on i,

so probability of a sequence is completely determined by:
Pr) = ) (start probabilities)
Plilyic1) = o(vi-1,¥i) (transition probabilities), so:
n
P(y) = «n) HU(YI—laYI)
i=2

6
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Markov models of varying-length sequences

e To define a model of sequences y = (y1, ..., y,) of varying lengths
n, need to define P(n)
e An easy way to do this:
» add a new end marker symbol ‘<' to Y
» pad all sequences with this end-marker

Yy = Y,y Yn 49,

» set 0(<,<) =1, i.e., < is a sink state
» so o(y,<) is probability of sequence ending after state y

e We can also incorporate the start probabilities ¢ into o by
introducing a new begin marker y; = >

Yy = >yyi, Yo, Yn, 4,4 ..., SOC

P(y) = HU(Yifla)/i) (only compute to i = n+ 1)
i=1



Outline

Hidden Markov models
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Hidden Markov models

e An HMM is specified by:
» A state-to-state transition matrix o, where o(y, y') is the
probability of moving from state y to state y’
» A state-to-observation emission matrix T, where 7(y, x) is the
probability of emitting x in state y

P(y,z) = P(y)P(z|y)

P(y) = HP(Yi’_)/i—l) = HU(Yifla)/i)

P(zly) = HP(X:"Y;) = HT()/;,X/)

i=1

e l.e., each x; is generated conditioned on y; with probability 7(y;, x;)



HMMs as stochastic automata

buy 0.2
flour 0.4
pan 0.4

0.3

10/27



Bayes net representation of an HMM

Yo =« — Y1 =V — Y, =D — Y; =N — Y, =«

! } }

X1 = flour X, = the X3 = pan
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Trellis representation of HMM

/
>
\ Yi=V — Yo=V

Yi=N _, Y,=N

Yo =

X1 = flour Xo = pan

e The trellis representation represents the possible state sequences y
for a single observation sequence x

e A trellis is a DAG with nodes (i,y), where i € 0,...,n+ 1 and
y € Y and edges from (i —1,y’) to (i, y)

e It plays a crucial role in dynamic programming algorithms for
HMMs
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Finding the most likely state sequence
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Two important inference problems

e Given an HMM o, 7 and an observation sequence x:
» what is the most likely state sequence § = argmax, P(x,y)?
> what is the probability of a sequence P(z) =, P(z,y)?
o If the sequences are short enough, can be solved by exhaustively
enumerating y
e Given a sequence of length n and an HMM with m states, can be
solved using dynamic programming in O(n m?) time
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Key observation: P(x,y) factorizes!

P(z,y) = (HU()/:'—L)/:')T()/:',XI‘)) 0(¥n, <), so:

—logP(x,y) = (Z — Iog(a(y,-l,y,-)T(y,-,x,-))> — log o(ya, <)

i=1
e Given observation sequence x, define a trellis with edge weights

W((i - 1,)//)7 (i’)/)) = - Iog(a(y,-,l,y,-) T(yf’Xf))
w((n,y), (n+1,9)) = —log(c(y,<))

e Then the — log probability of any state sequence y is the sum of
the weights of the corresponding path in the trellis

15 /27



Finding the most likely state sequence 9

e Goal: find § = argmax, P(x, y)

e Algorithm:
» Construct a trellis with edge weights
W((I_ 17}//)7 (I7y)) = —|0g(‘7()/i—1a)/i)7'(}/i,xi))
w((n,y), (n+1,9)) = —log(o(y,<))

» Run a shortest path algorithm on this trellis, which returns a state
sequence with lowest — log probability

16 /27



The Viterbi algorithm for finding ¥

e Idea: given x = (x1,...,X,), let u(k, u) be the maximum
probability of any state sequence y;, ..., yx ending in yy = u € ).

M(k, U) = max P(wlzkaylzk)

Yk Yk=U
» Base case: p(0,0) =1
» Recursive case:
:u(kv U) = maXM(k -1, ul) U(ula u) T(U,Xk)
u/
» Final case: u(n+1,<) = max, u(n,u')o(v',<)

e To find g, for each trellis node (k, u) keep a back-pointer to most
likely predecessor

plk,u) = argmaxu(k —1,u")o(v, u) 7(u, x)
u'ey

17 /27



Why does the Viterbi algorithm work?

pulk,u) = max P(1., Y1:4)
Yi:k P Yk=Uu
k
= max i—1,Yi iy Xi
Yi:k - Yk= UHUy 1y) (y )

= max (Ha Yi—1, y,) (y;,X;)) O'(Yk—hU)T(Uan)

Yl:k—1
=1

= max( max HU Yi-1,Yi) YHXI)> o(u', u) 7(u, xi)

u’ YLk—1: Yk—1=U'

= mue/)x,u(k—l,u) (u,u) 7(u, Xk)
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The sum-product algorithm for computing P(x)

e Goal: compute P(z) =3, v, P(z, y)

e Idea: given © = (x,...,x,), let a(k, u) be the sum of the
probabilities of x1,...,x, and all state sequences y1, ..., yx ending
in y, = u.

alk,u) = Z P(21.4, Y1:4)

Yik © Yk=U

» Base case: a(0,>) =1
» Recursive case: for k=1,...,n:

alk,u) = Za(k—l,u’)a(u’,u)T(u,Xi)

» Final case: a(n+1,<) = >, a(n, ) o(v,<)

e The « are called forward probabilities

19/27
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Estimating HMMs
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Estimating HMMSs from visible data

e Training data: D = ((x1,Y1),---,(®n, Yn)), where the x; and y;
are sequences
» for conceptual simplicity, assume that the data comes as two long
sequences D = (x,y)

e Then the MLE is:

R c(y,y)
oyy) = =
> evelysy)
. c(y,x)
, = , Where:
(D S 70 M
c(y’,y) = the number of times state y’ precedes state y in y

c(y,x) = the number of times state y emits x in (x,y)
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Estimating HMMSs from hidden data using EM

e EM iteration at time t:

oy ® — Bl y)]

S SIS = (ZR7)]

(y. x)® = Elely, x)] where:

D Se =70 s

Ble(y )] = > c(y,y)P(ylz, o1, 701
yeyr

Elc(y, )] = > cly,x)Pyle, a1, 71
yeyr

o Key computational problem: computing these expectations
efficiently

e Dynamic programming to the rescue!
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Expectations require marginal probabilities

e Suppose we could efficiently compute the marginal probabilities:

Zye}i" Lyi=y’ P(y, m)

P(Y; = ya) = 5

e Then we could efficiently compute:

Elc(y/,x)] = > P(Yi=y|x)

i xj=x'

e Efficiently computing E[c(y’, y)] requires computation of a
different marginal probability
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Backward probabilities

e Idea: given x = (xq,...,x,), let 5(k, v) be the sum of the

probabilities of xx11,...,x, and all state sequences yy1,...,Yn
conditioned on y, = v.
Blk,v) = Y P(Tuctin Yertnl Ye = V)
Ykin P Yk=V

» Base case: 5(n,v) = o(v,<) for each v € Y
» Recursive case: for k=n—-1,...,0:

Blk,v) = Za(v, VY T(V xk1) B(k + 1, V)

V/

e The 3 are called backward probabilities

24 /27



Computing marginals from forward and backward

probabilities

1

(a;
1

(:I;

P(Y; = u|x)

)—U

=

1

(2)
1

P(x)

)

P(y, )

Z P(wl:iaylzi)P(mi-i-l:n;yi:n)

LYi=u Yin L Yi=

( Z P(wlziaylzi)><

Z P(wiJrl:n’yi:n)
Yi= ,
B, u)

ali,u

e So the marginal P(Y;|x) can be efficiently computed from a and 3
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Conclusion
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Conclusion

e Hidden Markov Models (HMMs) can be used to label a sequence
of observations

e There are efficient dynamic programming algorithms to find the
most likely label sequence and the marginal probability of a label

e The expectation-maximization algorithm can be used to learn an
HMM from unlabeled data

e The expected values required for EM can be efficiently computed

27 /27
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