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In this question, we examine the probabilistic principal component analysis (PPCA) model
introduced in lecture. To simplify things, we make the following assumptions:

• The N training vectors xi ∈ R
D×1, i = 1, . . . , N, have already been centered, so that

∑

N

i=1
xi = 0. We thus constrain the PPCA model to also have zero mean.

• The desired latent space is one-dimensional, so that observations are represented by
coordinates zi ∈ R.

In this case, the PPCA generative model can be written as follows:

p(zi) = Normal(zi | 0, 1) p(xi | zi, w, λ) = Normal(xi | wzi, λID)
Here, ID is a D×D identity matrix, and w ∈ R

D×1 and λ > 0 are parameters to be estimated
from the N training observations x = [x1, x2, . . . , xN ]. We will estimate these parameters
via the EM algorithm.

a) Suppose that the PPCA model parameters w, λ are known, and consider the posterior
distribution p(zi | xi, w, λ). Computation of this distribution is the E-step of the EM
algorithm for PPCA. What standard family is it a member of? Give explicit formulas for
all parameters of the posterior distribution, in terms of xi, w, and λ.

Because p(zi) is normal, and xi is a linear function of zi plus independent Gaussian noise,
the posterior p(zi | xi) is also normal. The two formula sheet expressions for normal
conditional distributions provide two alternative forms of this posterior:

p(zi | xi, w, λ) = Normal(zi | (wTw + λ)−1wTxi, λ/(w
Tw + λ))

= Normal(zi | wT (wwT + λID)
−1xi, 1− wT (wwT + λID)

−1w)

The first form is computationally preferable, as it avoids matrix inversion.

b) Give an expression for the expected complete-data log-likelihood E[log p(x, z | w, λ)], where
the expectation is with respect to a distribution on z in the family determined in part (a).
What particular expectations of zi must be computed to explicitly evaluate this expression?

E[log p(x, z | w, λ)] =
N
∑

i=1

−1

2
E[z2

i
]− D

2
log(λ)− 1

2λ
E[||xi − wzi||2]

=

N
∑

i=1

−1

2
(si +m2

i
)− D

2
log(λ)− 1

2λ
(||xi − wmi||2 + ||w||2si)
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Here, we have dropped the 1/
√
2π normalization constants, and expressed the expected

complete-data log-likelihood in terms of mi = E[zi] and si = Var[zi], or equivalently
E[z2

i
] = si +m2

i
. These statistics are directly available from the E-step.

c) Take the derivative of the expected log-likelihood from part (b) with respect to λ, set to
zero, and simplify to determine the M-step estimate λ̂ of the variance parameter.

∂E[log p(x, z | w, λ)]
∂λ

= −ND

2λ
+

1

2λ2

N
∑

i=1

||xi − wmi||2 + ||w||2si = 0

λ̂ =
1

ND

N
∑

i=1

||xi − wmi||2 + ||w||2si

d) Take the derivative of the expected log-likelihood from part (b) with respect to wk, an
element of the principal subspace vector w. Set this expression to zero, and simplify to
determine the M-step estimate ŵ of the principal subspace.

∂E[log p(x, z | w, λ)]
∂wk

= − 1

2λ

N
∑

i=1

−2mi(xik − wkmi) + 2wksi = 0

N
∑

i=1

wkm
2

i
+ wksi =

N
∑

i=1

mixik

ŵk =

[

N
∑

i=1

m2

i
+ si

]−1

·
N
∑

i=1

mixik

e) Suppose that the EM algorithm converges to a particular set of parameters ŵ, λ̂. Are these
ML parameter estimates unique? If so, provide an argument for why this is the case. If
not, construct an alternative set of parameters w̄, λ̄ which have equal log-likelihood, i.e.
which satisfy log p(x | ŵ, λ̂) = log p(x | w̄, λ̄).
If we set w̄ = −ŵ and λ̄ = λ̂, we recover an equivalent model because E[xix

T

i
] =

ŵŵT+λ̂ID = w̄w̄T+λ̄ID. This change, which effectively reflects the latent space zi → −zi,
is a special case of the rotational ambiguity seen in higher dimensions.
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Useful formulae

∫ b

a

xn dx =
bn+1 − an+1

n + 1

Beta(θ | a, b) =
Γ(a + b)

Γ(a) Γ(b)
θa−1 (1 − θ)b−1 for 0 ≤ θ ≤ 1

E[ θ | a, b ] =

∫

1

0

θ Beta(θ | a, b) dθ =
a

a + b

Var[ θ | a, b ] = E[ θ2 | a, b ] − E[ θ | a, b ]2 =
ab

(a + b)2(a + b + 1)

Unif(θ | a, b) =

{

1/(b − a) if a ≤ θ ≤ b

0 otherwise

E[ θ | a, b ] =

∫ ∞

−∞

θ Unif(θ | a, b) dθ =
a + b

2

Var[ θ | a, b ] = E[ θ2 | a, b ] − E[ θ | a, b ]2 =
(b − a)2

12

Normal(θ | µ, λ) =
1√
2πλ

exp

{

−(θ − µ)2

2λ

}

for θ ∈ R

E[ θ | µ, λ ] =

∫ ∞

−∞

θ Normal(θ | µ, λ) dθ = µ

Var[ θ | µ, λ ] = E[ θ2 | µ, λ ] − E[ θ | µ, λ ]2 = λ

Normal(θ | µ, Λ) =
1

(2π)d/2|Λ|1/2
exp

{

−1

2
(θ − µ)TΛ−1(θ − µ)

}

for θ ∈ R
d

E[ θ | µ, Λ ] = µ Var[ θ | µ, Λ ] = E[ θθT | µ, Λ ] − µµT = Λ

p(x, y) = Normal

([

x
y

]
∣

∣

∣

∣

[

µx

µy

]

,

[

Λxx Λxy

Λyx Λyy

])

Λyx = ΛT
xy

p(y | x) = Normal
(

y | µy + ΛyxΛ
−1

xx (x − µx), Λyy − ΛyxΛ
−1

xx Λxy

)

p(x, y) = p(y)p(x | y) = Normal (y | µy, Λyy)Normal (x | Wy + µr, R)

p(y | x) = Normal
(

y | Λy|x(Λ
−1

yy µy + W T R−1(x − µr)), Λy|x

)

Λy|x = (Λ−1

yy + W T R−1W )−1
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