Introduction to
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Lecture 19: EM Algorithm

Many figures courtesy Kevin Murphy’s textbook,
Machine Learning: A Probabilistic Perspective



Gaussian Mixture Models
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Mixture of 3 Gaussian Contour Plot of Joint Density,
Distributions in 2D Marginalizing Cluster Assignments



Gaussian Mixture Models

Surface Plot of Joint Density,
Marginalizing Cluster Assignments



Fitting Gaussian Mixtures
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Posterior Assignment Probabilities
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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Binary Features: Mixtures of Bernoullis
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10 Clusters Identified via EM Algorithm from Binarized MNIST Digits




Label SWltChlng iIn Mixture Models
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Clustering Evaluation: Rand Index

TP+TN
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Consider all pairs of data points, and count fraction
where hypothesized and target clusterings agree



Singularities: ML for Gaussian Mixtures
A

p(x)
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Avoid via placing prior on mixture variances. EM still applies.
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Numerical Instability: Gaussian Mixtures

fraction of times EM for GMM fails vs dimensionality
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Convexity & Jensen'’s Inequality




Lower Bounds on Marginal Likelihood
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Expectation Maximization Algorithm
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EM: A Sequence of Lower Bounds
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Dimensionality Reduction

Supervised Learning  Unsupervised Learning

reduction

% classification or

S cation o clustering
& categorization

Q

2]

S

5 dimensionalit
£ regression y
e

S

o

®)

« Goal: Infer label/response y given only features x

 Classical: Find latent variables y good for compression of x

* Probabilistic learning: Estimate parameters of joint
distribution p(x,y) which maximize marqginal probability p(x)



Principal Components Analysis (PCA)
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Probabilistic PCA




