Introduction to
Machine Learning

Brown University CSCI 1950-F, Spring 2011
Prof. Erik Sudderth

Lecture 18: Clustering, Mixture Models,
Expectation-Maximization (EM) Algorithm

Many figures courtesy Kevin Murphy’s textbook,
Machine Learning: A Probabilistic Perspective



K-Means Algorithm
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K-Means Algorithm
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K-Means Algorithm
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Reconstruction Error versus lteration
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Test Error versus K

MSE on test vs K for K-means
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For compressing new data, more codewords is always better.
Cross-validation fails for unsupervised learning!



Gaussian Mixture Models
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Mixture of 3 Gaussian Contour Plot of Joint Density,
Distributions in 2D Marginalizing Cluster Assignments



Gaussian Mixture Models

Surface Plot of Joint Density,
Marginalizing Cluster Assignments



Fitting Gaussian Mixtures
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Posterior Assignment Probabilities
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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EM Algorithm
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Singularities: ML for Gaussian Mixtures
A

p(x)
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We are hoping EM will find a good local optimum...
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Density Shape Matters

21 errors using gauss (red=error) 4 errors using student (red=error)
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Real Clusters may not be Round

two circles, 2 clusters (K-means)
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