Introduction to Machine Learning

Brown University CSCI 1950-F, Spring 2011 Prof. Erik Sudderth

Lecture 17: Support Vector Machines, Clustering, K-Means

> Many figures courtesy Kevin Murphy's textbook, Machine Learning: A Probabilistic Perspective

Losses for Binary Classification

Maximum Margin Hyperplanes

If multiple linear classifiers perfectly separate training data, which should I choose?

Support Vectors & Slack Variables

Support vectors (green) for data separable by radial basis function kernels, and non-linear margin boundaries

Linear decision boundary in feature space, where data violating margin have nonzero "slack variables"

C. Bishop, Pattern Recognition & Machine Learning

How Many Support Vectors?

Multiclass Support Vector Machines

Complicated by the fact that binary SVM classifiers are **not** calibrated probabilistic models

On to Unsupervised Learning

	Supervised Learning	Unsupervised Learning
Discrete	classification or categorization	clustering
Continuous	regression	dimensionality reduction

- Goal: Infer label/response y given only features x
- **Classical:** Find latent variables y good for *compression* of x
- Probabilistic learning: Estimate parameters of joint distribution p(x,y) which maximize marginal probability p(x)

Clustering can be Ambiguous

C. Bishop, Pattern Recognition & Machine Learning

For compressing new data, more codewords is always better. Cross-validation fails for unsupervised learning!