Introduction to Machine Learning

Brown University CSCI 1950-F, Spring 2011 Prof. Erik Sudderth

Lecture 14: L₁ Optimization, Kernel Methods, Gaussian Process Regression

> Many figures courtesy Kevin Murphy's textbook, Machine Learning: A Probabilistic Perspective

Laplace Distribution

Relative to Gaussian distributions with equal variance:

- Many samples are near zero
- Occasional large-magnitude samples are far more likely
- Negative log probability density is convex but not smooth

Constrained Optimization

Laplacian prior Gaussian prior L₁ regularization L₂ regularization Lasso regression Ridge regression

Where do level sets of the quadratic regression cost function first intersect the constraint set?

Shrinkage for Orthonormal Features

Regularization Paths

Prostate Cancer Dataset with N=67, D=8

Vertical lines are models chosen by cross-validation

Optimization: Projected Gradient

Generic method based on gradient & projection operators: $\mathbf{w}_{k+1} = \mathbf{w}_k + \eta_k \mathbf{d}_k$ $\mathbf{d}_k = \operatorname{proj}(\mathbf{w}_k - \eta_k \mathbf{g}_k) - \mathbf{w}_k$

Projection onto non-negativity constraint is trivial: $w_i := \max(w_i, 0)$

Good properties, extensions choose even better descent directions...