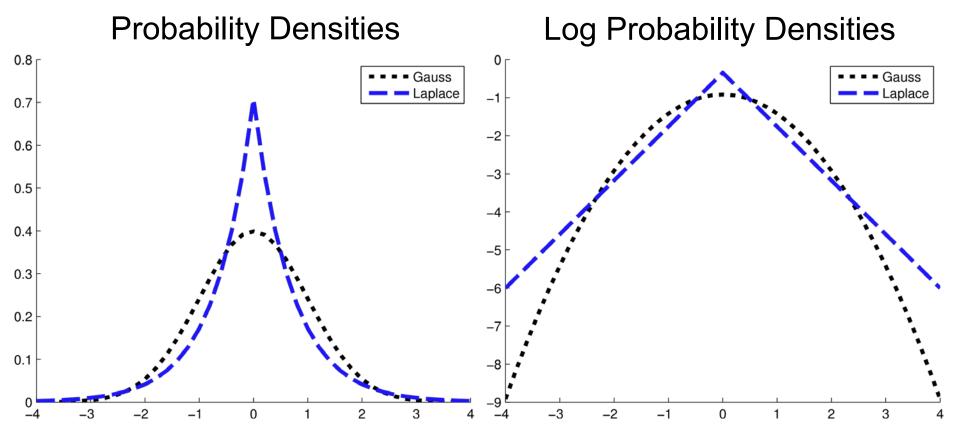
Introduction to Machine Learning

Brown University CSCI 1950-F, Spring 2011 Prof. Erik Sudderth

Lecture 13: Robust Regression, Feature Selection & Search, L₁ Regularization

> Many figures courtesy Kevin Murphy's textbook, Machine Learning: A Probabilistic Perspective

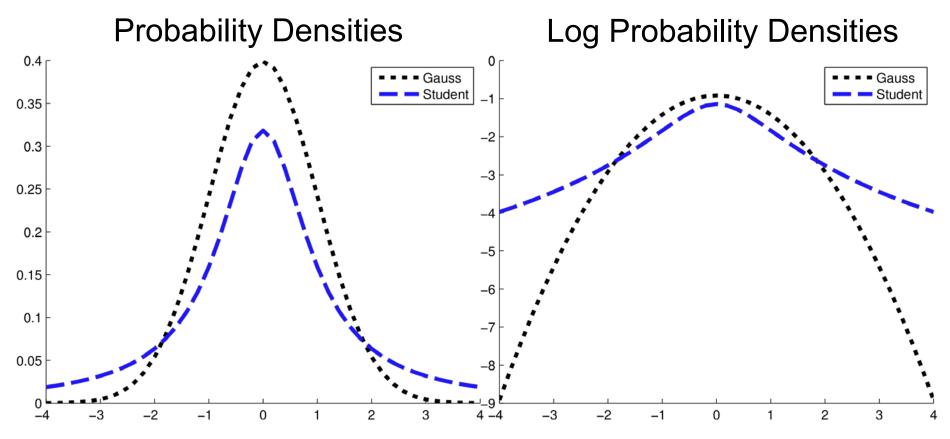
Laplace Distribution



Relative to Gaussian distributions with equal variance:

- Many samples are near zero
- Occasional large-magnitude samples are far more likely
- Negative log probability density is convex but not smooth

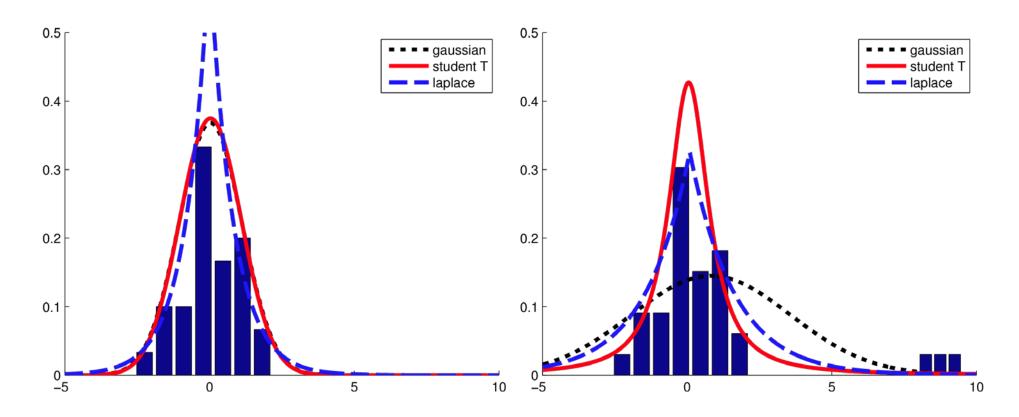
Student T Distribution



Relative to Gaussian distributions with equal variance:

- Approaches Gaussian as DOF parameter approaches infinity
- For small DOF, large-magnitude samples are far more likely
- Negative log probability density is smooth but not convex

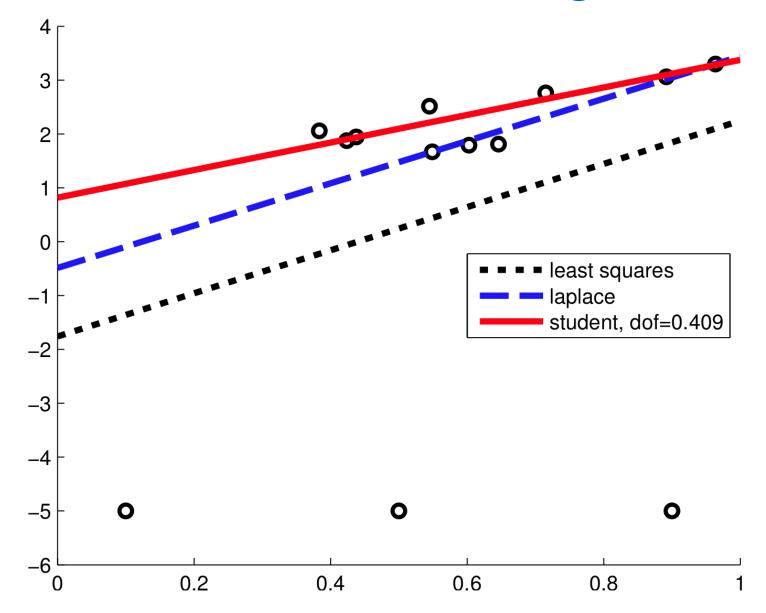
Outliers & ML Estimation



Maximum likelihood estimates of mean parameters:

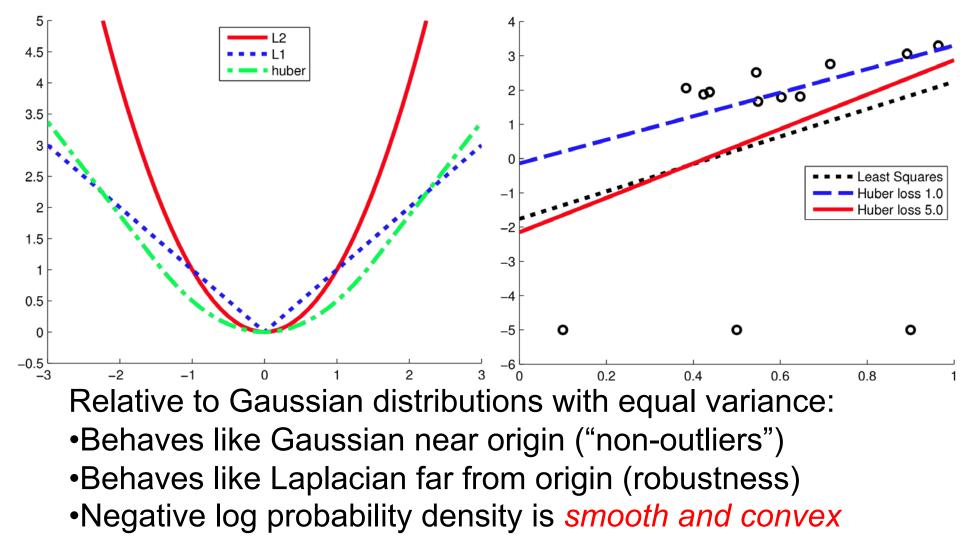
- Gaussian: Sample mean of data
- Laplacian: Sample median of data
- Student T: No closed form, optimize via gradient methods

Outliers & Linear Regression

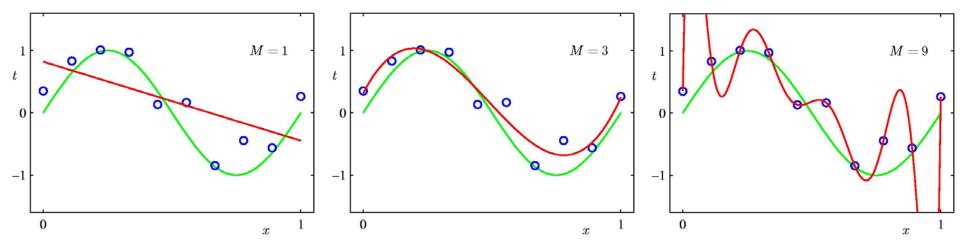


Huber Loss Function

Robust Linear Regression

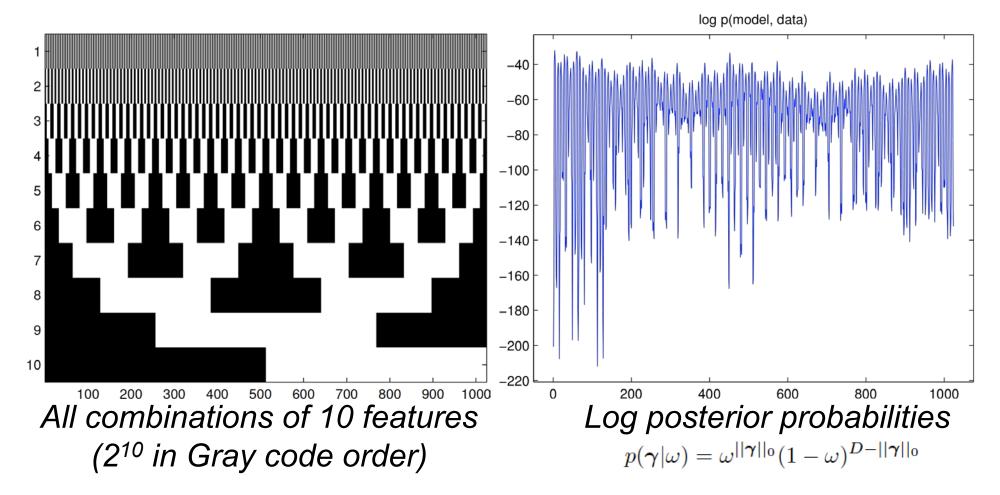


Regularization in Regression



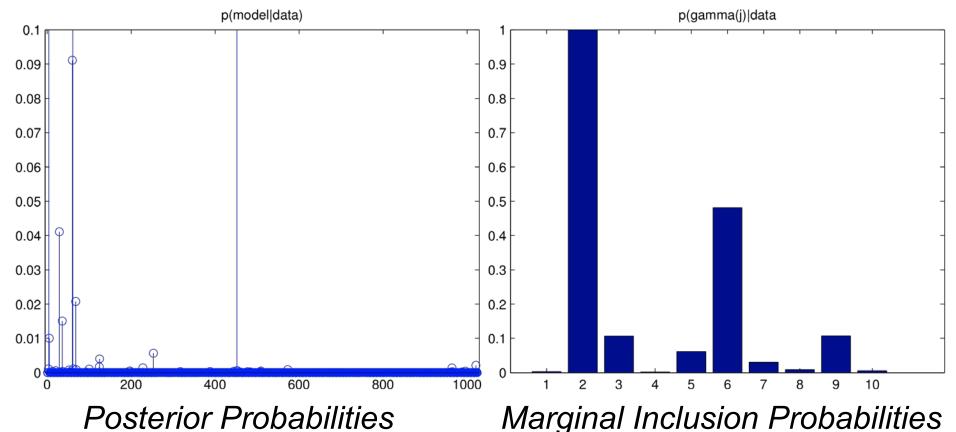
- Basic model selection: Coefficients are ordered, and only the first M are non-zero
 - Classical example: polynomial regression
 - What if my features aren't easy to interpret?
- Gaussian prior (L₂ regularization): Coefficients are small
 - Computation & storage: Expensive for many features
 - Interpretability: Doesn't identify important features
- Many applications: Only some of my features are relevant, but I don't know how many or which ones

Feature Selection: Regression



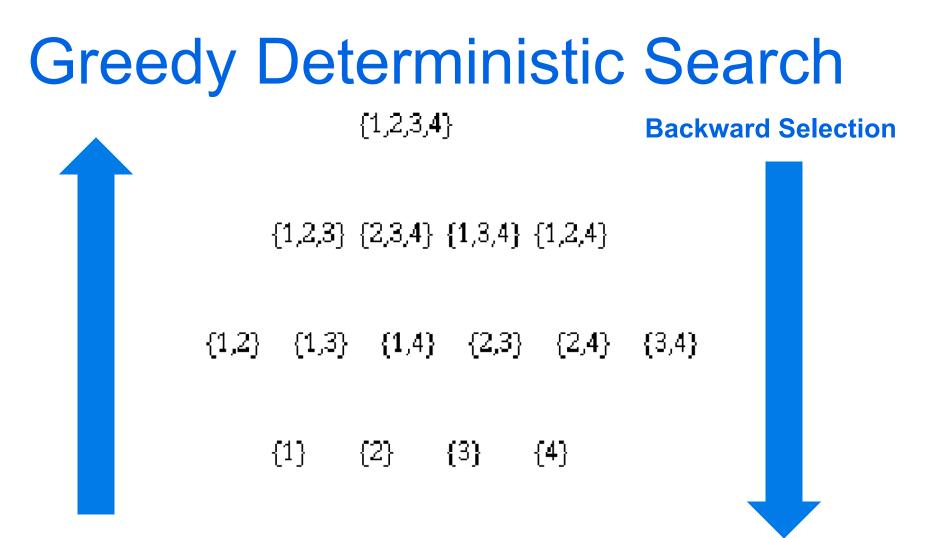
Dataset: N=10 samples based on linear regression weights $\mathbf{w} = (0.00, -1.67, 0.13, 0.00, 0.00, 1.19, 0.00, -0.04, 0.33, 0.00)$

Feature Selection: Regression



Most likely models: {2}, {2,6}, {2,6,9}, ...

Dataset: N=10 samples based on linear regression weights $\mathbf{w} = (0.00, -1.67, 0.13, 0.00, 0.00, 1.19, 0.00, -0.04, 0.33, 0.00)$



Forward Selection

- Consider all possible ways of adding *(forward selection)* or removing *(backward selection)* one feature
- Add or remove the best feature, or stop if the current model is best

{}

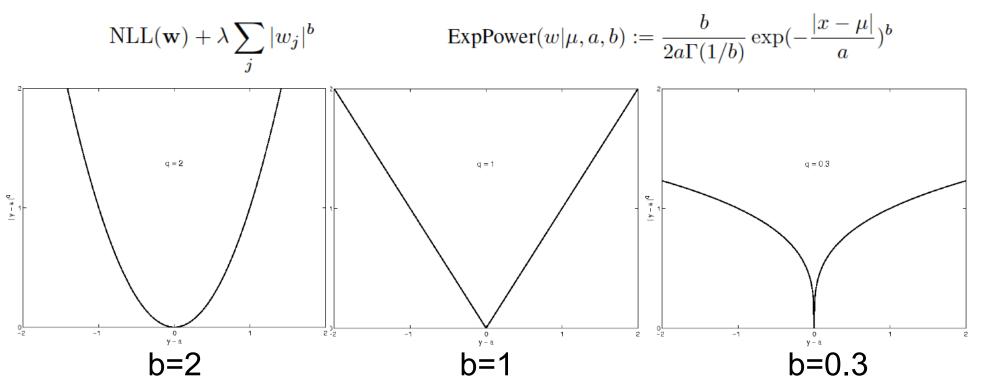
• Wrapper method: Can be applied to any objective. *Guarantees???*

Constrained Optimization

Laplacian prior Gaussian prior L₁ regularization L₂ regularization Lasso regression Ridge regression

Where do level sets of the quadratic regression cost function first intersect the constraint set?

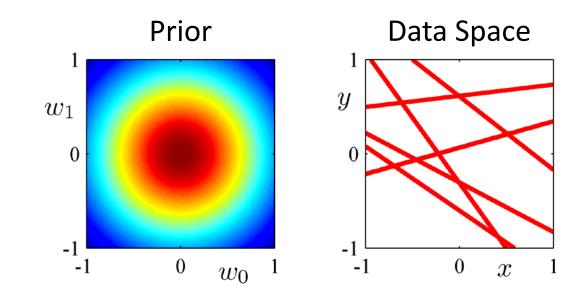
Generalized Norms: Bridge Regression



- Convex objective function (true norm): $b \ge 1$
- Encourages sparse solutions (cusp at zero): $b \le 1$
- Lasso/Laplacian (convex & sparsifying): b = 1
- Ridge/Gaussian (classical, closed form solutions): b = 2
- Sparsity via discrete counts (greedy search): $b \rightarrow 0$

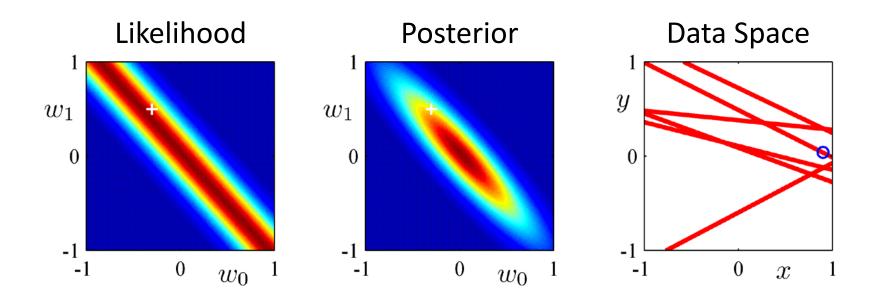
Bayesian Linear Regression

0 data points observed



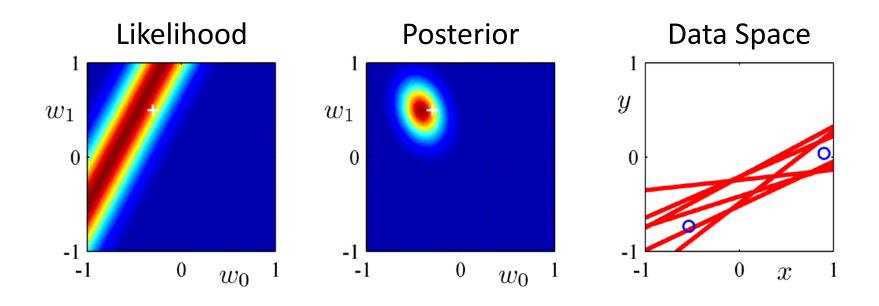
Bayesian Linear Regression

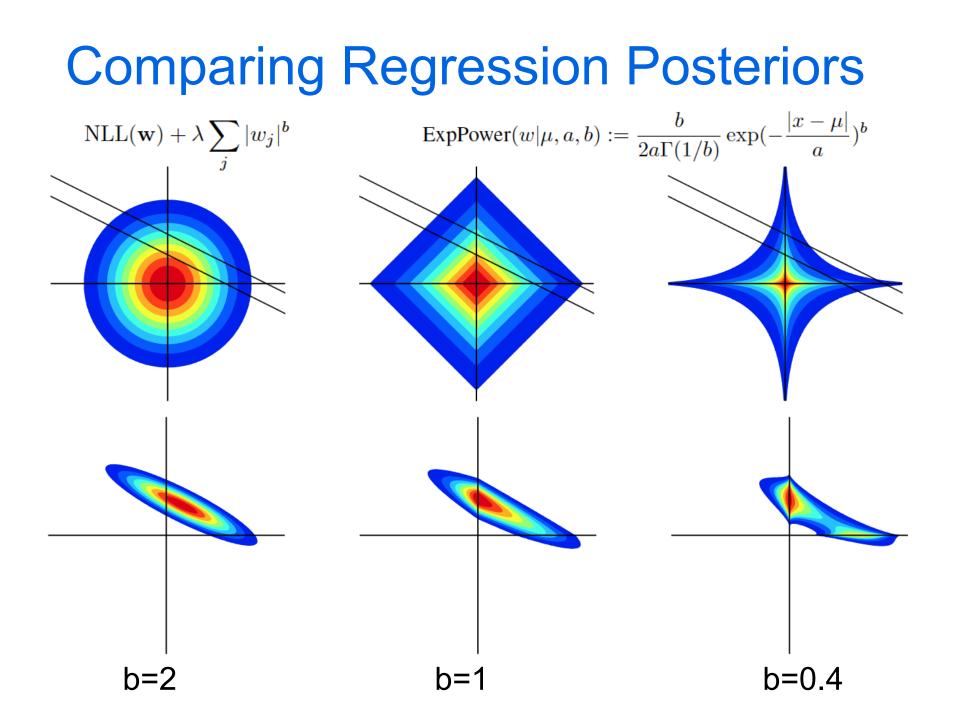
1 data point observed



Bayesian Linear Regression

2 data points observed





Shrinkage for Orthonormal Features

