Introduction to
Machine Learning

Brown University CSCI 1950-F, Spring 2011
Prof. Erik Sudderth

Lecture 13: Robust Regression,
Feature Selection & Search, L, Regularization

Many figures courtesy Kevin Murphy’s textbook,
Machine Learning: A Probabilistic Perspective
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Laplace Distribution

Relative to Gaussian distributions with equal variance:
 Many samples are near zero

« Occasional large-magnitude samples are far more likely
* Negative log probability density is convex but not smooth



Student T Distribution
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Relative to Gaussian distributions with equal variance:

« Approaches Gaussian as DOF parameter approaches infinity
* For small DOF, large-magnitude samples are far more likely
* Negative log probability density is smooth but not convex



Outliers & ML Estimation
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Maximum likelihood estimates of mean parameters:
« Gaussian: Sample mean of data

« Laplacian: Sample median of data
« Student T: No closed form, optimize via gradient methods



Outliers & Linear Regression
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Huber Loss Function

Negative Log Probabilities Robust Linear Regression
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Relative to Gaussian distributions with equal variance:
Behaves like Gaussian near origin (“non-outliers”)
*Behaves like Laplacian far from origin (robustness)
*Negative log probability density is smooth and convex



Regularization in Regression

« Basic model selection: Coefficients are ordered,
and only the first M are non-zero
 Classical example: polynomial regression
* What if my features aren’t easy to interpret?
» Gaussian prior (L, regularization): Coefficients are small
« Computation & storage: Expensive for many features
* Interpretability: Doesn’t identify important features

« Many applications: Only some of my features are
relevant, but | don’t know how many or which ones



Feature Selection: Regression

log p(model, data)
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Log posterior probabilities

p(y|w) = wlllle(1 — w)
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Dataset: N=10 samples based on linear regression weights

w = (0.00,—-1.67,0.13,0.00,0.00, 1.19,0.00, —0.04, 0.33, 0.00)




Feature Selection: Regression

p(model|data)

p(gamma(j)|data
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Posterior Probabilities Marginal Inclusion Probabilities

Most likely models: {2}, {2,6}, {2,6,9}, ...

Dataset: N=10 samples based on linear regression weights

w = (0.00,—-1.67,0.13,0.00,0.00

,1.19,0.00,—-0.04, 0.33,0.00)



Greedy Deterministic Search

1,234} Backward Selection

11,231 {2541 11,541 {1.24]

(1.2 {12y {14y 230 {24y (3.4

(3 S = S 1 H
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» Consider all possible ways of adding (forward selection) or
removing (backward selection) one feature

* Add or remove the best feature, or stop if the current model is best

* Wrapper method: Can be applied to any objective. Guarantees???



Constrained Optimization

Laplacian prior Gaussian prior
L, regularization L, regularization
Lasso regression Ridge regression
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Where do level sets of the quadratic regression
cost function first intersect the constraint set?



Generalized Norms: Bridge Regression
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« Convex objective function (true norm): b =1

« Encourages sparse solutions (cusp at zero): b <1

» Lasso/Laplacian (convex & sparsifying): b = 1

» Ridge/Gaussian (classical, closed form solutions): b = 2
« Sparsity via discrete counts (greedy search): b 2 0



Bayesian Linear Regression

0 data points observed

Prior Data Space




Bayesian Linear Regression

1 data point observed

Likelihood Posterior Data Space
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Bayesian Linear Regression

2 data points observed

Likelihood Posterior Data Space




Comparing Regression Posteriors

NLL(w) + A Z Pk ExpPower(w|u, a,b) :=
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Shrinkage for Orthonormal Features
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