
CS195f Homework 7

Mark Johnson and Erik Sudderth

Homework due at 2pm, 8th December 2009

We begin by learning hidden Markov models (HMMs) which describe the statistics of
English text. In this application, each discrete “time” point corresponds to a single letter. For
training, we use a chapter from Lewis Carroll’s Alice’s Adventures in Wonderland, available
in aliceTrainRaw.txt. To simplify the modeling task, we first converted letters to lower–
case and removed all punctuation. The resulting text, stored in aliceTrain.txt, is a
sequence composed of 27 distinct characters (26 letters, as well as whitespace encoded via
an underscore ‘ ’).

In many applications of HMMs, there is insufficient data to select the model order via
cross–validation. In these situations, the state dimension is often selected via either the
Akaike information criterion (AIC) or Bayesian information criterion (BIC). Let y = (y1, . . . , yT )
denote the observed training sequence, x = (x1, . . . , xT ) a hidden state sequence, and θ̂M an
ML estimate of the parameters for an HMM with M states:

θ̂M = arg max
θM

p(y | θM ) = arg max
θM

∑

x

p(y | x, θM)p(x | θM) xt ∈ {1, . . . , M}

For this model, the AIC and BIC take the following form:

AICM = log p(y | θ̂M) − d(M)

BICM = log p(y | θ̂M) −
1

2
d(M) log(T )

Here, d(M) is the number of parameters (degrees of freedom) for an HMM with M states.
The “best” model is then the one for which AICM or BICM is largest.

You will need to use Kevin Murphy’s Matlab HMM toolbox, available at
http://people.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

An example script providing partial solutions, as well as auxiliary functions useful for dealing
with character data, are posted here:

/course/cs195f/asgn/hmm

WARNING: Training HMMs via the EM algorithm may take a few hours of computation
time, so start early!

Question 1:

a) The method dhmm_em.m, provided by the HMM toolbox, is an implementation of the ex-
pectation maximization (EM) algorithm for ML parameter estimation in HMMs. Use this
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package to learn HMMs with different hidden state dimensions (for example, try models
with M = 1, 5, 10, 15, 20, 30, 40, 50, 60 states). Note that the model with M = 1 is a un-
igram model, which assumes that characters are independent. For each of these models,
use a single random initialization, and run the EM algorithm for at most 500 iterations,
or until the change in log-likelihood falls below 10−6. Compute the log–likelihood which
each model assigns to the training sequence. Save these models for later sections.

b) Derive a formula for the number of parameters d in an HMM with M hidden states, and
observations taking one of W discrete values. Remember to account for normalization
constraints (for example, a discrete distribution on 4 events has only 3 degrees of freedom,
since the probabilities of these events must sum to one). Plot the training log–likelihood
log p(y | θ̂M), AICM , and BICM versus M for the HMMs learned in part (a). Which
criterion favors simpler models?

c) To test our learned HMMs, we use the text from a different chapter of Alice’s Adventures
in Wonderland, available in aliceTest.txt. Using dhmm_logprob.m, evaluate the test
chapter’s log–likelihood with respect to each HMM learned in part (a). Plot these test log–
likelihoods versus M . Which model selection criterion better predicted test performance?

d) Using the method sampleText, generate a random 500–character sequence from four dif-
ferent HMMs: the model with no sequential dependence (M = 1), the model with the
highest BICM , the model with the highest AICM , and the most complex model. Compare
and contrast these sequences. What aspects of English text do they capture? What do
they miss?

In addition to computing likelihoods, HMMs lead to an efficient forward–backward al-
gorithm which estimates the posterior probabilities of unobserved state sequences. This
problem uses this method to estimate the identities of characters which have been erased
from a text document.

Let xt ∈ {1, . . . , M} denote the hidden state at position t, and yt the “true” character
at position t of some document. Suppose that instead of observing y, we observe an alter-
native sequence z in which some letters have been erased. We assume that each letter is
independently erased with probability ǫ, so that

P[Zt = yt | Yt = yt] = 1 − ǫ P[Zt = ∗ | Yt = yt] = ǫ

where ‘*’ is a special erasure symbol. Figure 1 shows a graphical model describing this
generative process. Note that we never observe an “incorrect” letter; zt is always either
identical to yt, or the erasure symbol ‘*’.

Question 2:

a) Starting with the test sequence from aliceTest.txt, generate a “noisy” text sequence by
randomly erasing letters with probability ǫ = 0.2. See the sample script for code which
does this. Print out the first 500 characters of the noisy sequence.
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x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

z1 z2 z3 z4 z5

Hidden States:

1  4  3  3  7

True Text:

h  e  l  l  o

Observed Text:

h  *  l  l  *

Figure 1: Graphical model illustrating an HMM with hidden states xt which generate letters
yt. We observe a sequence z in which some of these letters have been erased.

b) Using the method fwdback.m, compute the posterior distributions p(xt | z) for the four
models from problem 1(d). To do this, exploit the fact that

p(zt | xt) =
∑

yt

p(zt | yt)p(yt | xt)

This implies that if we sum or marginalize over the possible values of the letters yt, we
recover a standard hidden Markov model in which the observations zt are independent
given the hidden state sequence x.

c) Suppose that we observe a letter zt 6= ∗ at position t. Argue that this implies that yt = zt

with probability one.

d) Suppose that we observe an erasure at position t, so that p(zt = ∗ | yt) = ǫ remains con-
stant as yt is varied (since erasures provide no information about the underlying letter).
Using the factored form of the generative model (as illustrated by the graph in Fig. 1),
and the form of the observation model, show that the posterior distribution of yt is

p(yt | z, zt = ∗) ∝ p(zt | yt)p(yt | z1, . . . , zt−1, zt+1, . . . , zT )

∝
∑

xt

p(yt | xt)p(xt | z)

where p(xt | z) is the posterior distribution of xt given the full noisy sequence z.

e) Using the marginal distributions p(xt | z) from part (b), and the equation from part (d),
determine the most likely missing letter for each erasure. Or, equivalently, implement the
decision rule which minimizes the expected number of incorrect characters.

f) Determine the percentage of missing letters which were correctly estimated by each model.
What would chance performance be for this task? Print the first 500 characters of the
denoised text produced by each model from problem 1(d), and comment on any differences.
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In the final question, we revisit the Bayesian linear regression model from HW4. As
before, given M basis functions φj(x), j = 1, . . . , M , we model the dependence of response
variables yi on input covariates xi as follows:

p(yi | xi, w, β) = N (yi | wTφ(xi), β
−1) p(w | α) = N (w | 0, α−1IM)

Rather than searching over a discrete grid of potential values for the hyperparameters α

and β, we will instead estimate them via the EM algorithm. In the E-step, we compute
the expected value of certain statistics of the M-dimensional vector of regression coefficients
w. In the M-step, we use these to produce new estimates of α and β. For a more detailed
overview, see Sec. 9.3.4 of Bishop’s textbook, Pattern Recognition and Machine Learning.
The previously distributed solutions for HW4 may also be useful.

Question 3: (200-level graduate credit)

a) For the normal distributions assumed above, derive the form of the expected “complete-
data” log likelihood, E[log p(y, w | x, α, β)], given N observations y = (y1, y2, . . . , yN).
What particular statistics do we need to determine the expectations of in the E-step, in
order to concretely evaluate this expression?

b) Take the derivative of the expression in part (a) with respect to α, set it to zero, and
determine the M-step update of α.

c) Take the derivative of the expression in part (a) with respect to β, set it to zero, and
determine the M-step update of β.

d) Using the equations from the preceding parts, implement the EM algorithm for this model.
Consider two different families of basis functions, the polynomial and radial basis func-
tions from HW4, both with order M = 100. For each family, initialize α(0) = 0.01,
β(0) = 0.0025, and run EM until changes in the likelihood fall below 10−6. Plot the
resulting sequences of parameters α(t) and β(t), as well as the corresponding likelihoods
p(y | α(t), β(t)) (see the formula from HW4, problem 3(a)). What is the test accuracy of
the resulting models, using the squared-error loss from HW4?
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