
CS195f Homework 3

Mark Johnson and Erik Sudderth

Homework due at 2pm, 5th November 2009

This problem set asks you to investigate exponential or “Maximum Entropy” classifiers.
These involve probability distributions of the form:

P(y | x) =
1

Zx(w)
exp (w · f(y, x)) , where

Zx(w) =
∑
y′∈Y

exp (w · f(y′, x))

where:

• y ∈ Y is the class label we want to predict,

• x ∈ X are the conditioning or predictive variables,

• f(y, x) ∈ IRm is an m-dimensional feature vector for pair (y, x), and

• w ∈ IRm is an m-dimensional weight vector, where wj is the weight corresponding to
feature fj(y, x).

Learning MaxEnt classifiers involves finding the weight vectors w given training data D and
the vector of feature functions f .

We’ll use a uniform Gaussian prior on the feature weights w, i.e.:

P(w) ∝ exp (−αw ·w)

where α is a user-settable parameter that controls the degree of regularization.

Question 1:

1. Give an expression for the regularized negative log conditional likelihood of a generic
data set D = ((x1, y1), . . . , (xn, yn)), ignoring any terms and factors that do not depend
on w.

2. Give an expression for the derivative of the regularized negative log likelihood with
respect to a feature weight wj.

Now we will construct an estimator for the feature weights w. We will use the Nursery
data set that was used in previous exercises, which you can find in

1



/course/cs195f/asgn/naive_bayes/handout/nursery/nursery.mat.

You should divide this data into equal-sized training, development and testing data sets as
follows (the reset ensures that we’ll all use the same training/test split).

load(’/course/cs195f/asgn/naive_bayes/handout/nursery/nursery.mat’);

reset(RandStream.getDefaultStream)

data = data(randperm(size(data,1)),:);

train = data(1:size(data,1)/3,:);

dev = data(size(data,1)/3+1:2*size(data,1)/3,:);

test = data(2*size(data,1)/3+1:end,:);

In this data set, each conditioning variable xi is in fact a vector with m = 8 components
or attributes, so xi = (xi,1, . . . , xi,8). Let Xj be the range of the jth attribute, so X =
X1 × . . .×X8. Let Y be the set of class labels.

The features you use should contain the following feature functions:

• For each y′ ∈ Y , include a feature function fy′(y,x) = II(y, y′), where II(u, v) is the
indicator function (i.e., II(u, v) = 1 iff u = v).

• For each j ∈ 1, . . . , 8, each x′ ∈ Xj and each y′ ∈ Y , include a feature function
fy′,j,x′(y,x) = II(y, y′) II(xj, x

′)

You should implement a MaxEnt estimator using the fminunc function from the Matlab
optimization toolbox to find the weight vector w that minimizes the regularized negative
log conditional likelihood on the training data. You should provide the optimizer with the
derivative of the regularized negative log likelihood.

The following Matlab commands tells fminunc to use the gradient information and per-
form at most 1,000 iterations.

options = optimset(’MaxIter’, 1000, ’GradObj’, ’on’);

argminw = fminunc(myfun, w0, options);

Here w0 is an initial guess at the weight vector (a vector of all zeros is fine) and myfun is
a function that you’ve written that takes a weight vector w as its argument and returns a
pair of values; viz., the regularized negative log conditional likelihood and a vector of its
derivatives. Other options you might find useful are

options = optimset(’MaxIter’, 100, ’GradObj’, ’on’, ’Display’, ’iter’);

which makes the optimizer print out debugging information on each iteration.
You may find it useful to pass parameters to myfun by using a function handle:

argminw = fminunc(@(u) myfun(u, e1, e2,...), w0, options);

where e1, e2, etc., are expressions whose values you want to pass to myfun.
For all of these questions, do all calculations for 20 logarithmically-spaced values of α

between 10−4 and 10 as follows:

alpha = logspace(-4,1,20);

Deqing (our fearless grad TA) has prepared a code skeleton to help you, which you can find
in /course/cs195f/asgn/MaxEnt.

2



Question 2:

1. Plot the negative log conditional likelihood of the train data as a function of α when
training and evaluating on train.

2. Plot of the accuracy of the classifier as a function of α when training and evaluating
on train.

3. Plot the negative log conditional likelihood of the dev data as a function of α. That
is, for each value of α estimate the feature weight w from the train data, and then
calculate the negative log conditional likelihood of the dev data for that value of w.
Find a value of α which minimizes the negative log conditional likelihood of the dev

data.

4. Plot the accuracy of the classifier when training on train and evaluating on dev data
as a function of α. Find a value of α which maximizes the accuracy on the dev data.

5. For the weight vectors w corresponding to two values of α identified in (3) and (4),
evaluate the corresponding classifier on test and report your results.

Graduate credit problem section

This next question asks you to develop a maximum likelihood estimator for MaxEnt models
for the situation where the training data is only partially observed. To keep the maths simple,
we’ll work with unconditioned models. That is, we’re trying to learn the feature weights w
for a model of the form:

Pw(y) =
1

Z(w)
exp (w · f(y) )

Z(w) =
∑
y′∈Y

exp (w · f(y′) )

In class we gave the formulae for the log likelihood and its derivatives with respect to wj for
the situation where the data is fully observed, i.e., where D = (y1, . . . , yn) and each yi ∈ Y .
For this question, assume that the data is partially observed, i.e., where D = (Y1, . . . ,Yn)
and each ∅ ⊂ Yi ⊆ Y . That is, the ith observation of the training data specifies a subset Yi

of values in which the true value lies (i.e., yi ∈ Yi) but doesn’t identify yi itself.

Question 3: (graduate credit)

1. Give the log likelihood of w given partially observed data D.

2. Give the derivative of the log likelihood with respect to weight wj in terms of expectations
involving Pw.

3


