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Sequence labeling
• Input: a sequence x = (x1, . . . , xn) (usually n may vary)
• Output: a sequence y = (x1, . . . , yn), where yi is a label for xi

Part of speech (POS) tagging:

y :
x :

DT
the

JJ
big

NN
cat

VBD
bit

NNP
Sam

.

.

Noun-phrase chunking:

y :
x :

[NP
the

NP
big

NP]
cat bit

[NP]
Sam

.

.

Named entity detection:

y :
x :

[CO
XYZ

CO]
Corp. of

[LOC]
Boston announced

[PER]
Spade’s resignation

Speech recognition: The x are 100 msec. time slices of acoustic input,
and the y are the corresponding phonemes (i.e., yi is the
phoneme being uttered in time slice xi)
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Sequence labeling with probabilistic models

• General idea: develop a probabilistic model P(y,x)
I use this to compute P(y|x) and ŷ(x) = argmaxy P(y|x)

• A Hidden Markov Model (HMM) factors:

P(y,x) = P(y) P(x|y)

• P(y) is the probability of sequence y
I In an HMM, P(y) is a Markov chain

– in applications, y is usually “hidden”

I P(x|y) is the emission model.
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Markov models of sequences
• Let y = (y1, . . . , yn), where yi ∈ Y and n is fixed

P(y) = P(y1) P(y2|y1) P(y3|y1, y2) . . . P(yn|y1, . . . , yn−1)

= P(y1)
n∏

i=2

P(yi |y1:i−1)

where yi :j is the subsequence (yi , . . . , yj) of y
• In a (first-order) Markov chain:

P(yi |y1:i−1) = P(yi |yi−1) for i > 1

• In a homogenous Markov chain, P(yi |yi−1) does not depend on i ,
so probability of a sequence is completely determined by:

P(y1) = ι(y1) (start probabilities)

P(yi |yi−1) = σ(yi−1, yi) (transition probabilities), so:

P(y) = ι(y1)
n∏

i=2

σ(yi−1, yi)
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Markov models of varying-length sequences
• To define a model of sequences y = (y1, . . . , yn) of varying lengths

n, need to define P(n)
• An easy way to do this:

I add a new end marker symbol ‘/’ to Y
I pad all sequences with this end-marker

y = y1, y2, . . . , yn, /, /, . . .

I set σ(/, /) = 1, i.e., / is a sink state
I so σ(y , /) is probability of sequence ending after state y

• We can also incorporate the start probabilities ι into σ by
introducing a new begin marker y0 = .

y = ., y1, y2, . . . , yn, /, /, . . . , so:

P(y) =
∞∏
i=1

σ(yi−1, yi) (only compute to i = n + 1)

7 / 27



Outline

What is sequence labeling?

Markov models

Hidden Markov models

Finding the most likely state sequence

Estimating HMMs

Conclusion

8 / 27



Hidden Markov models

• An HMM is specified by:
I A state-to-state transition matrix σ, where σ(y , y ′) is the

probability of moving from state y to state y ′

I A state-to-observation emission matrix τ , where τ(y , x) is the
probability of emitting x in state y

P(y,x) = P(y) P(x|y)

P(y) =
n+1∏
i=1

P(yi |yi−1) =
n+1∏
i=1

σ(yi−1, yi)

P(x|y) =
n∏

i=1

P(xi |yi) =
n∏

i=1

τ(yi , xi)

• I.e., each xi is generated conditioned on yi with probability τ(yi , xi)
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HMMs as stochastic automata

D
the 0.7
a 0.3

V
buy 0.4
eat 0.3
flour 0.2
pan 0.1

/

N
buy 0.2
flour 0.4
pan 0.4

.

0.3

0.3

0.4

0.4
0.3

0.3

0.3

0.3

0.4
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Bayes net representation of an HMM

Y0 = / Y1 = V

X1 = flour X2 = the

Y3 = N

X3 = pan

Y4 = /Y2 = D
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Trellis representation of HMM

Y1 = N

Y1 = V Y2 = V

Y2 = N

Y3 = /Y0 = .

X1 = flour X2 = pan

• The trellis representation represents the possible state sequences y
for a single observation sequence x

• A trellis is a DAG with nodes (i , y), where i ∈ 0, . . . , n + 1 and
y ∈ Y and edges from (i − 1, y ′) to (i , y)

• It plays a crucial role in dynamic programming algorithms for
HMMs
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Two important inference problems

• Given an HMM σ, τ and an observation sequence x:
I what is the most likely state sequence ŷ = argmaxy P(x,y)?
I what is the probability of a sequence P(x) =

∑
y P(x,y)?

• If the sequences are short enough, can be solved by exhaustively
enumerating y

• Given a sequence of length n and an HMM with m states, can be
solved using dynamic programming in O(n m2) time
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Key observation: P(x,y) factorizes!

P(x,y) =

(
n∏

i=1

σ(yi−1, yi) τ(yi , xi)

)
σ(yn, /), so:

− log P(x,y) =

(
n∑

i=1

− log(σ(yi−1, yi) τ(yi , xi))

)
− log σ(yn, /)

• Given observation sequence x, define a trellis with edge weights

w((i − 1, y ′), (i , y)) = − log(σ(yi−1, yi) τ(yi , xi))

w((n, y), (n + 1, /)) = − log(σ(y , /))

• Then the − log probability of any state sequence y is the sum of
the weights of the corresponding path in the trellis
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Finding the most likely state sequence ŷ

• Goal: find ŷ = argmaxy P(x,y)

• Algorithm:
I Construct a trellis with edge weights

w((i − 1, y ′), (i , y)) = − log(σ(yi−1, yi ) τ(yi , xi ))

w((n, y), (n + 1, /)) = − log(σ(y , /))

I Run a shortest path algorithm on this trellis, which returns a state
sequence with lowest − log probability
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The Viterbi algorithm for finding ŷ
• Idea: given x = (x1, . . . , xn), let µ(k , u) be the maximum

probability of any state sequence y1, . . . , yk ending in yk = u ∈ Y .

µ(k , u) = max
y1:k : yk=u

P(x1:k ,y1:k)

I Base case: µ(0, .) = 1
I Recursive case:

µ(k, u) = max
u′

µ(k − 1, u′)σ(u′, u) τ(u, xk)

I Final case: µ(n + 1, /) = maxu′ µ(n, u′)σ(u′, /)

• To find ŷ, for each trellis node (k , u) keep a back-pointer to most
likely predecessor

ρ(k , u) = argmax
u′∈Y

µ(k − 1, u′)σ(u′, u) τ(u, xk)
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Why does the Viterbi algorithm work?

µ(k , u) = max
y1:k : yk=u

P(x1:k ,y1:k)

= max
y1:k : yk=u

k∏
i=1

σ(yi−1, yi) τ(yi , xi)

= max
y1:k−1

(
k−1∏
i=1

σ(yi−1, yi) τ(yi , xi)

)
σ(yk−1, u) τ(u, xk)

= max
u′

(
max

y1:k−1 : yk−1=u′

k−1∏
i=1

σ(yi−1, yi) τ(yi , xi)

)
σ(u′, u) τ(u, xk)

= max
u′

µ(k − 1, u′)σ(u′, u) τ(u, xk)
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The sum-product algorithm for computing P(x)
• Goal: compute P(x) =

∑
y∈Yn P(x,y)

• Idea: given x = (x1, . . . , xn), let α(k , u) be the sum of the
probabilities of x1, . . . , xk and all state sequences y1, . . . , yk ending
in yk = u.

α(k , u) =
∑

y1:k : yk=u

P(x1:k ,y1:k)

I Base case: α(0, .) = 1
I Recursive case: for k = 1, . . . , n:

α(k , u) =
∑
u′

α(k − 1, u′)σ(u′, u) τ(u, xi )

I Final case: α(n + 1, /) =
∑

u′ α(n, u′)σ(u′, /)

• The α are called forward probabilities
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Estimating HMMs from visible data

• Training data: D = ((x1,y1), . . . , (xn,yn)), where the xi and yi

are sequences
I for conceptual simplicity, assume that the data comes as two long

sequences D = (x,y)

• Then the MLE is:

σ̂(y ′, y) =
c(y ′, y)∑

y∈Y c(y ′, y)

τ̂(y , x) =
c(y , x)∑

x∈X c(y , x)
, where:

c(y ′, y) = the number of times state y ′ precedes state y in y

c(y , x) = the number of times state y emits x in (x,y)
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Estimating HMMs from hidden data using EM

• EM iteration at time t:

σ(y ′, y)
(t)

=
E[c(y ′, y)]∑

y∈Y E[c(y ′, y)]

τ(y , x)(t) =
E[c(y , x)]∑

x∈X E[c(y , x)]
, where:

E[c(y ′, y)] =
∑
y∈Yn

c(y ′, y) P(y|x,σ(t−1), τ (t−1))

E[c(y , x)] =
∑
y∈Yn

c(y , x) P(y|x,σ(t−1), τ (t−1))

• Key computational problem: computing these expectations
efficiently

• Dynamic programming to the rescue!
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Expectations require marginal probabilities

• Suppose we could efficiently compute the marginal probabilities:

P(Yi = y ′|x) =

∑
y∈Yn : yi=y ′ P(y,x)

P(x)

• Then we could efficiently compute:

E[c(y ′, x ′)] =
∑

i : xi=x ′

P(Yi = y ′|x)

• Efficiently computing E[c(y ′, y)] requires computation of a
different marginal probability
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Backward probabilities

• Idea: given x = (x1, . . . , xn), let β(k , v) be the sum of the
probabilities of xk+1, . . . , xn and all state sequences yk+1, . . . , yn

conditioned on yk = v .

β(k , v) =
∑

yk:n : yk=v

P(xk+1:n,yk+1:n|Yk = v)

I Base case: β(n, v) = σ(v , /) for each v ∈ Y
I Recursive case: for k = n − 1, . . . , 0:

β(k, v) =
∑
v ′

σ(v , v ′) τ(v ′, xk+1)β(k + 1, v ′)

• The β are called backward probabilities
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Computing marginals from forward and backward

probabilities

P(Yi = u|x) =
1

P(x)

∑
y∈Yn : yi=u

P(y,x)

=
1

P(x)

∑
y1:k : yi=u

∑
yi :n : yi=u

P(x1:i ,y1:i)P(xi+1:n,yi :n)

=
1

P(x)

( ∑
y1:k : yi=u

P(x1:i ,y1:i)

)( ∑
yk:n : yi=u

P(xi+1:n,yi :n)

)

=
1

P(x)
α(i , u) β(i , u)

• So the marginal P(Yi |x) can be efficiently computed from α and β
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Conclusion

• Hidden Markov Models (HMMs) can be used to label a sequence
of observations

• There are efficient dynamic programming algorithms to find the
most likely label sequence and the marginal probability of a label

• The expectation-maximization algorithm can be used to learn an
HMM from unlabeled data

• The expected values required for EM can be efficiently computed
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