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Why Expectation Maximization?

• Expectation Maximization (EM) is a general approach for
solving problems involving hidden or latent variables Y

• Goal: learn the parameter vector θ of a model Pθ(X, Y) from
training data D = (x1, . . . , xn) consisting of samples from
Pθ(X), i.e., Y is hidden

• Maximum likelihood estimate using D:

θ̂ = argmax
θ

LD(θ) = argmax
θ

n

∏
i=1

∑
y∈Y

Pθ(xi, y)

• EM is useful when directly optimizing LD(θ) is intractible,
but computing MLE from fully-observed data
D′ = ((x1, y1), . . . , (xn, yn)) is easy
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Mixture models and clustering

• A mixture model is a linear combination of models

P(X = x) = ∑
y∈Y

P(Y = y) P(X = x|Y = y), where:

y ∈ Y identifies the mixture component,
P(y) is probability of generating mixture component y, and
P(x|y) is distribution associated with mixture component y

• In clustering, Y = {1, . . . , m} are the cluster labels
I After learning P(y) and P(x|y), compute cluster probabilities

for data item xi as follows:

P(Y = y|X = xi) =
P(Y = y) P(X = xi|Y = y)

∑y′∈Y P(Y = y′) P(X = xi|Y = y′)
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Mixtures of multinomials (1)

• Y = {1, . . . , m}, i.e., m different clusters
I Y is coin identity in coin-tossing game
I Y is sentence topic in sentence clustering application

• X = U `, i.e., each observation is a sequence x = (u1, . . . , u`),
where each uk ∈ U

I U = {H, T}, x is one sequence of coin tosses from same
(unknown) coin

I U is the vocabulary, x is a sentence (sequence of words)
• Assume each uk is generated i.i.d. given y, so models have

parameters:
I P(Y = y) = πy, i.e., probability of picking cluster y
I P(Uk = u|Y = y) = ϕu|y, i.e., probability of generating a u in

cluster y
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Mixtures of multinomials (2)

P(Y = y) = πy

P(Uk = u|Y = y) = ϕu|y

P(X = x, Y = y) = πy

`

∏
k=1

ϕuk|y

= πy ∏
u∈U

ϕ
cu(x)
uk|y

where x = (u1, . . . , u`), and
cu(x) is number of times u appears in x.
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Coin-tossing example

π1 = π2 = 0.5
ϕH|1 = 0.1; ϕT|1 = 0.9
ϕH|2 = 0.8; ϕT|2 = 0.2

P(X = HTHH, Y = 1) = π1 ϕ3
H|1 ϕ1

T|1 = 0.00045

P(X = HTHH, Y = 2) = π2 ϕ3
H|2 ϕ1

T|2 = 0.0512

P(X = HTHH) = π1 ϕ3
H|1 ϕ1

T|1 + π2 ϕ3
H|2 ϕ1

T|2
= 0.05165, so:

P(Y = 1 | X = HTHH) =
P(X = HTHH, Y = 1)

P(X = HTHH)
= 0.008712

P(Y = 2 | X = HTHH) = 0.9912
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Estimation from visible data

• Given visible data how would we estimate π and ϕ?
• Data D′ = ((x1, y1), . . . , (xn, yn)), where each

xi = (ui,1, . . . , ui,`)
• Sufficient statistics for estimating multinomial mixture:

I ny = ∑n
i=1 II(y, yi), i.e., number of times cluster y is seen

I nu,y = ∑n
i=1 cu(xi)II(y, yi), i.e., number of times u is seen in

cluster y, where cu(x) is the number of times u appears in x
• Maximum likelihood estimates:

π̂y =
ny

n

ϕ̂u|y =
nu,y

∑u′∈U nu′,y
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Estimation from hidden data (1)
• Data D = (x1, . . . , xn), where each xi = (ui,1, . . . , ui,`)
• Log likelihood of hidden data:

log LD(π, ϕ) =
n

∑
i=1

log ∑
y∈Y

πy ∏
u∈U

ϕ
cu(xi)
u|y

• Imposing Lagrange multipliers and setting the derivative to
zero, we can show:

π̂y =
E[ny]

n
; ϕ̂u|y =

E[nu,y]
∑u′∈U E[nu′,y]

, where:

E[ny] =
n

∑
i=1

Pπ̂,ϕ̂(Y = y | X = xi)

E[nu,y] =
n

∑
i=1

cu(xi) Pπ̂,ϕ̂(Y = y | X = xi)
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Estimation from hidden data (2)

π̂y =
E[ny]

n
; ϕ̂u|y =

E[nu,y]
∑u′∈U E[nu′,y]

, where:

E[ny] =
n

∑
i=1

Pπ̂,ϕ̂(Y = y | X = xi)

E[nu,y] =
n

∑
i=1

cu(xi) Pπ̂,ϕ̂(Y = y | X = xi)

• Unlike in the visible data case, these are not a closed-form
solution for π̂ or ϕ̂, as E[ny] and E[nu,y] involve π̂ and ϕ̂

• But they do suggest a fixed-point calculation procedure
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EM for multinomial mixtures
• Guess initial values π(0) and ϕ(0)

• For iterations t = 1, 2, 3, . . . do:
I E-step: calculate expected values of sufficient statistics

E[ny] =
n

∑
i=1

Pπ(t−1),ϕ(t−1)(Y = y | X = xi)

E[nu,y] =
n

∑
i=1

cu(xi) Pπ(t−1),ϕ(t−1)(Y = y | X = xi)

I M-step: update model based on sufficient statistics

π
(t)
y =

E[ny]
n

ϕ
(t)
u|y =

E[nu,y]
∑u′∈U E[nu′,y]
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Summary of the model

P(Y = y | X = x) =
P(Y = y, X = x)

∑y′∈Y P(Y = y′, X = x)

Pπ,ϕ(X = x, Y = y) = πy ∏
u∈U

ϕ
cu(x)
u|y , where:

cu(x) = the number of times u appears in x
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Homework hints

• The fact that different sentences have different lengths doesn’t
affect the calculation

• cu(xi) is the number of times word u appears in sentence xi

• You can initialize π with a uniform distribution, but you’ll
need to initialize ϕ(0) to break symmetry, e.g., by adding a
random number of about 10−4

• You should compute the log likelihood at each iteration (it’s
easy to do this as a by-product of the expectation calculations)

I There is a theorem that says the log likelihood never decreases
on each EM step

I If your log likelihood decreases, then you have a bug!
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