A gentle introduction to Expectation Maximization

> Mark Johnson Brown University

November 2009

Outline

What is Expectation Maximization?

Mixture models and clustering

EM for sentence topic modeling

Why Expectation Maximization?

- *Expectation Maximization* (EM) is a general approach for solving problems involving *hidden* or *latent variables Y*
- Goal: learn the parameter vector θ of a model $P_{\theta}(X, Y)$ from training data $D = (x_1, \dots, x_n)$ consisting of samples from $P_{\theta}(X)$, i.e., *Y is hidden*
- Maximum likelihood estimate using *D*:

$$\hat{\theta} = \operatorname{argmax}_{\theta} L_D(\theta) = \operatorname{argmax}_{\theta} \prod_{i=1}^n \sum_{y \in \mathcal{Y}} P_{\theta}(x_i, y)$$

EM is useful when directly optimizing L_D(θ) is intractible, but *computing MLE from fully-observed data* D' = ((x₁, y₁), ..., (x_n, y_n)) *is easy*

Outline

What is Expectation Maximization?

Mixture models and clustering

EM for sentence topic modeling

Mixture models and clustering

• A *mixture model* is a linear combination of models

$$P(X = x) = \sum_{y \in \mathcal{Y}} P(Y = y) P(X = x | Y = y)$$
, where:

 $y \in \mathcal{Y}$ identifies the *mixture component*, P(y) is probability of generating mixture component y, and P(x|y) is distribution associated with mixture component y

- In clustering, $\mathcal{Y} = \{1, \dots, m\}$ are the *cluster labels*
 - ► After learning P(*y*) and P(*x*|*y*), compute cluster probabilities for data item *x_i* as follows:

$$P(Y = y | X = x_i) = \frac{P(Y = y) P(X = x_i | Y = y)}{\sum_{y' \in \mathcal{Y}} P(Y = y') P(X = x_i | Y = y')}$$

Mixtures of multinomials (1)

- $\mathcal{Y} = \{1, \dots, m\}$, i.e., *m* different clusters
 - Y is coin identity in coin-tossing game
 - *Y* is sentence topic in sentence clustering application
- $\mathcal{X} = \mathcal{U}^{\ell}$, i.e., each observation is a sequence $x = (u_1, \dots, u_{\ell})$, where each $u_k \in \mathcal{U}$
 - U = {H,T}, x is one sequence of coin tosses from same (unknown) coin
 - ► *U* is the vocabulary, *x* is a sentence (sequence of words)
- Assume each *u_k* is generated i.i.d. given *y*, so models have parameters:
 - $P(Y = y) = \pi_y$, i.e., probability of picking cluster y
 - $P(U_k = u | Y = y) = \varphi_{u|y}$, i.e., probability of generating a u in cluster y

Mixtures of multinomials (2)

$$P(Y = y) = \pi_y$$

$$P(U_k = u | Y = y) = \varphi_{u|y}$$

$$P(X = x, Y = y) = \pi_y \prod_{k=1}^{\ell} \varphi_{u_k|y}$$

$$= \pi_y \prod_{u \in \mathcal{U}} \varphi_{u_k|y}^{c_u(x)}$$

where $x = (u_1, ..., u_\ell)$, and $c_u(x)$ is number of times *u* appears in *x*.

Coin-tossing example

$$\begin{array}{rcl} \pi_1 &=& \pi_2 &=& 0.5 \\ \varphi_{\mathsf{H}|1} &=& 0.1; & & \varphi_{\mathsf{T}|1} &=& 0.9 \\ \varphi_{\mathsf{H}|2} &=& 0.8; & & \varphi_{\mathsf{T}|2} &=& 0.2 \end{array}$$

$$\begin{split} P(X = \mathsf{HTHH}, Y = 1) &= \pi_1 \, \varphi_{\mathsf{H}|1}^3 \, \varphi_{\mathsf{T}|1}^1 = 0.00045 \\ P(X = \mathsf{HTHH}, Y = 2) &= \pi_2 \, \varphi_{\mathsf{H}|2}^3 \, \varphi_{\mathsf{T}|2}^1 = 0.0512 \\ P(X = \mathsf{HTHH}) &= \pi_1 \, \varphi_{\mathsf{H}|1}^3 \, \varphi_{\mathsf{T}|1}^1 + \pi_2 \, \varphi_{\mathsf{H}|2}^3 \, \varphi_{\mathsf{T}|2}^1 \\ &= 0.05165, \, \mathrm{so:} \\ P(Y = 1 \mid X = \mathsf{HTHH}) &= \frac{\mathsf{P}(X = \mathsf{HTHH}, Y = 1)}{\mathsf{P}(X = \mathsf{HTHH})} \\ &= 0.008712 \\ P(Y = 2 \mid X = \mathsf{HTHH}) = 0.9912 \end{split}$$

Estimation from visible data

- Given visible data how would we estimate π and φ ?
- Data $D' = ((x_1, y_1), ..., (x_n, y_n))$, where each $x_i = (u_{i,1}, ..., u_{i,\ell})$
- *Sufficient statistics* for estimating multinomial mixture:
 - $n_y = \sum_{i=1}^n \mathbf{I}(y, y_i)$, i.e., number of times cluster *y* is seen
 - $n_{u,y} = \sum_{i=1}^{n} c_u(x_i) \mathbb{I}(y, y_i)$, i.e., number of times *u* is seen in cluster *y*, where $c_u(x)$ is the number of times *u* appears in *x*
- Maximum likelihood estimates:

$$\widehat{\pi}_{y} = \frac{n_{y}}{n}$$

$$\widehat{\varphi}_{u|y} = \frac{n_{u,y}}{\sum_{u' \in \mathcal{U}} n_{u',y}}$$

Estimation from *hidden* data (1)

- Data $D = (x_1, ..., x_n)$, where each $x_i = (u_{i,1}, ..., u_{i,\ell})$
- Log likelihood of hidden data:

$$\log L_D(\pi,\varphi) = \sum_{i=1}^n \log \sum_{y \in \mathcal{Y}} \pi_y \prod_{u \in \mathcal{U}} \varphi_{u|y}^{c_u(x_i)}$$

• Imposing Lagrange multipliers and setting the derivative to zero, we can show:

$$\widehat{\pi}_{y} = \frac{\mathrm{E}[n_{y}]}{n}; \quad \widehat{\varphi}_{u|y} = \frac{\mathrm{E}[n_{u,y}]}{\sum_{u' \in \mathcal{U}} \mathrm{E}[n_{u',y}]}, \text{ where:}$$

$$\mathrm{E}[n_{y}] = \sum_{i=1}^{n} \mathrm{P}_{\widehat{\pi},\widehat{\varphi}}(Y = y \mid X = x_{i})$$

$$\mathrm{E}[n_{u,y}] = \sum_{i=1}^{n} c_{u}(x_{i}) \, \mathrm{P}_{\widehat{\pi},\widehat{\varphi}}(Y = y \mid X = x_{i})$$

Estimation from *hidden* data (2)

$$\widehat{\pi}_{y} = \frac{\mathrm{E}[n_{y}]}{n}; \qquad \widehat{\varphi}_{u|y} = \frac{\mathrm{E}[n_{u,y}]}{\sum_{u' \in \mathcal{U}} \mathrm{E}[n_{u',y}]}, \text{ where:}$$

$$\mathrm{E}[n_{y}] = \sum_{i=1}^{n} \mathrm{P}_{\widehat{\pi},\widehat{\varphi}}(Y = y \mid X = x_{i})$$

$$\mathrm{E}[n_{u,y}] = \sum_{i=1}^{n} c_{u}(x_{i}) \, \mathrm{P}_{\widehat{\pi},\widehat{\varphi}}(Y = y \mid X = x_{i})$$

- Unlike in the visible data case, these are not a *closed-form* solution for $\hat{\pi}$ or $\hat{\varphi}$, as $E[n_y]$ and $E[n_{u,y}]$ involve $\hat{\pi}$ and $\hat{\varphi}$
- But they do suggest a *fixed-point calculation procedure*

EM for multinomial mixtures

- Guess initial values $\pi^{(0)}$ and $\varphi^{(0)}$
- For iterations $t = 1, 2, 3, \ldots$ do:
 - *E-step:* calculate expected values of sufficient statistics

$$E[n_y] = \sum_{i=1}^{n} P_{\pi^{(t-1)}, \varphi^{(t-1)}}(Y = y \mid X = x_i)$$

$$E[n_{u,y}] = \sum_{i=1}^{n} c_u(x_i) P_{\pi^{(t-1)}, \varphi^{(t-1)}}(Y = y \mid X = x_i)$$

• *M-step:* update model based on sufficient statistics

$$\begin{aligned} \pi_y^{(t)} &= \frac{\mathrm{E}[n_y]}{n} \\ \varphi_{u|y}^{(t)} &= \frac{\mathrm{E}[n_{u,y}]}{\sum_{u' \in \mathcal{U}} \mathrm{E}[n_{u',y}]} \end{aligned}$$

Summary of the model

$$P(Y = y | X = x) = \frac{P(Y = y, X = x)}{\sum_{y' \in \mathcal{Y}} P(Y = y', X = x)}$$

$$P_{\pi,\varphi}(X = x, Y = y) = \pi_y \prod_{u \in \mathcal{U}} \varphi_{u|y}^{c_u(x)}, \text{ where:}$$

$$c_u(x) = \text{ the number of times } u \text{ appears in } x$$

Outline

What is Expectation Maximization?

Mixture models and clustering

EM for sentence topic modeling

Homework hints

- The fact that different sentences have different lengths doesn't affect the calculation
- $c_u(x_i)$ is the number of times word *u* appears in sentence x_i
- You can initialize π with a uniform distribution, but you'll need to initialize $\varphi^{(0)}$ to *break symmetry*, e.g., by adding a random number of about 10^{-4}
- You should compute the log likelihood at each iteration (it's easy to do this as a by-product of the expectation calculations)
 - There is a theorem that says the log likelihood never decreases on each EM step
 - If your log likelihood decreases, then you have a bug!