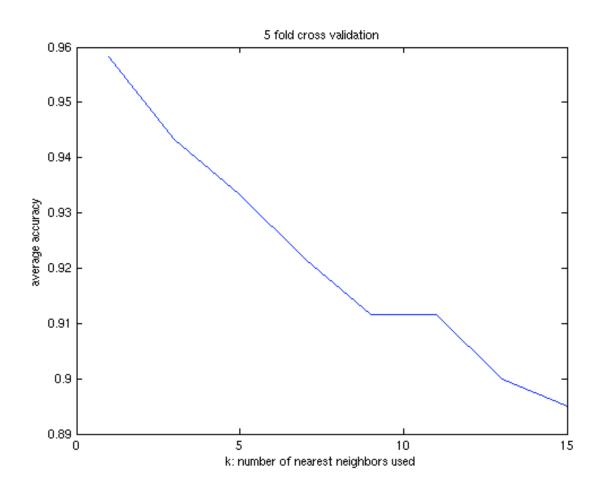
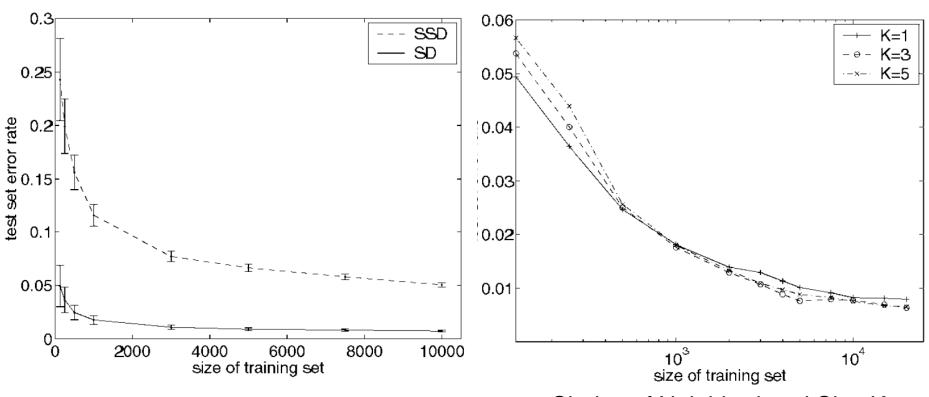
K-NN Cross-Validation: MNIST Digits



K-NN Performance: Shape Contexts

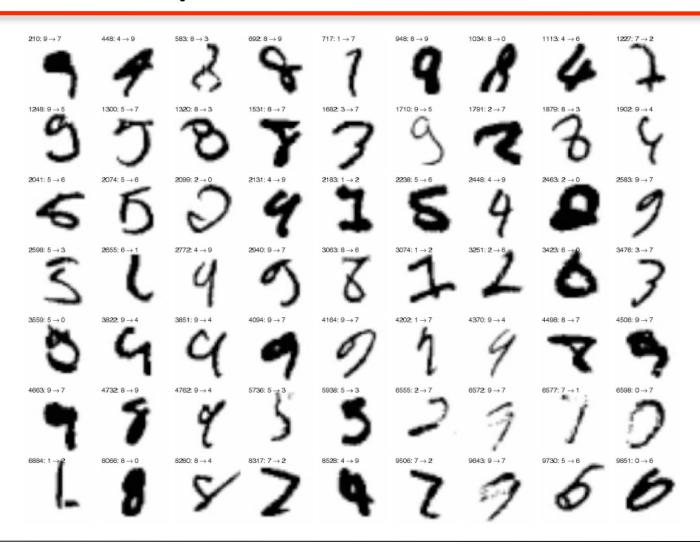


Alternative Distance Measures

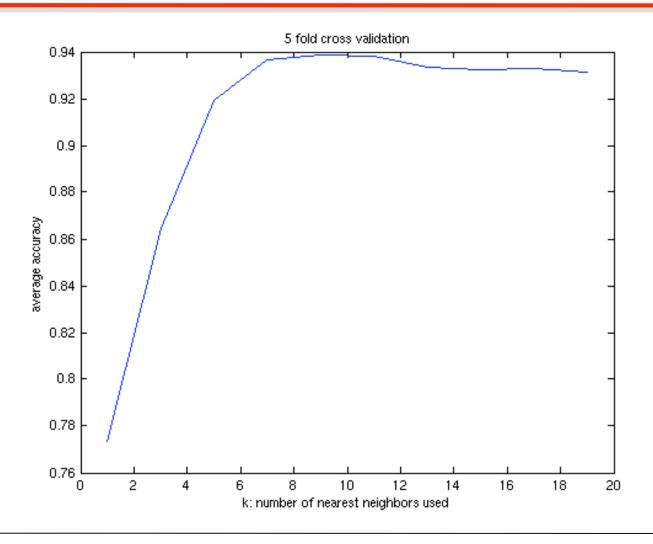
Choice of Neighborhood Size K

Belongie, Malik, & Puzicha, PAMI 2002

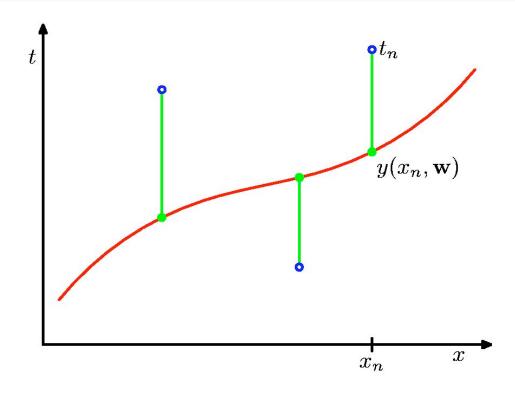
MNIST: Shape Context Errors



K-NN Cross-Validation: Nursery

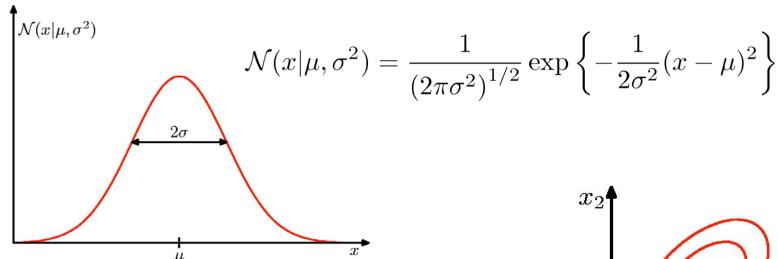


Sum-of-Squares Error Function



$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

The Gaussian Distribution

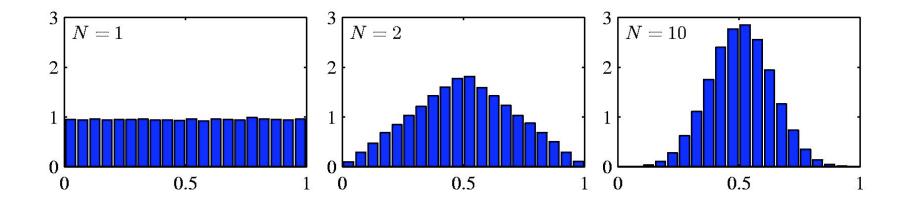


$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\}$$

Central Limit Theorem

The distribution of the sum of N i.i.d. random variables becomes increasingly Gaussian as N grows.

Example: N uniform [0,1] random variables.



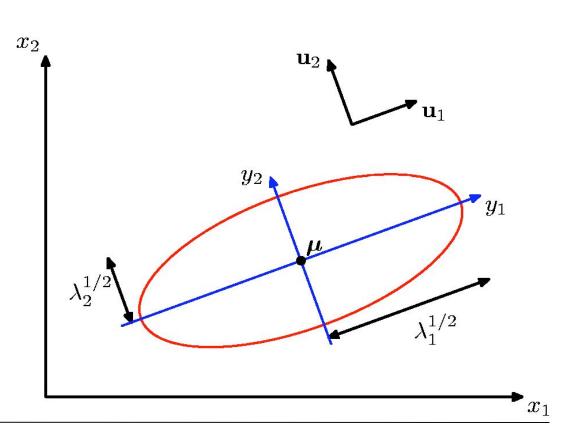
Geometry of the Multivariate Gaussian

$$\Delta^2 = (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

$$\mathbf{\Sigma}^{-1} = \sum_{i=1}^{D} \frac{1}{\lambda_i} \mathbf{u}_i \mathbf{u}_i^{\mathrm{T}}$$

$$\Delta^2 = \sum_{i=1}^D \frac{y_i^2}{\lambda_i}$$

$$y_i = \mathbf{u}_i^{\mathrm{T}}(\mathbf{x} - \boldsymbol{\mu})$$



Moments of the Multivariate Gaussian (1)

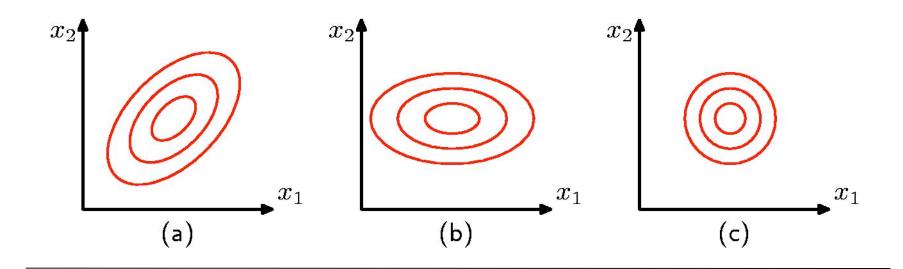
$$\mathbb{E}[\mathbf{x}] = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \int \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right\} \mathbf{x} \, d\mathbf{x}$$
$$= \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \int \exp\left\{-\frac{1}{2} \mathbf{z}^{\mathrm{T}} \mathbf{\Sigma}^{-1} \mathbf{z}\right\} (\mathbf{z} + \boldsymbol{\mu}) \, d\mathbf{z}$$

thanks to anti-symmetry of z

$$\mathbb{E}[\mathbf{x}] = \boldsymbol{\mu}$$

Moments of the Multivariate Gaussian (2)

$$\mathbb{E}[\mathbf{x}\mathbf{x}^{\mathrm{T}}] = \boldsymbol{\mu}\boldsymbol{\mu}^{\mathrm{T}} + \boldsymbol{\Sigma}$$
 $\operatorname{cov}[\mathbf{x}] = \mathbb{E}\left[(\mathbf{x} - \mathbb{E}[\mathbf{x}])(\mathbf{x} - \mathbb{E}[\mathbf{x}])^{\mathrm{T}}\right] = \boldsymbol{\Sigma}$



Partitioned Gaussian Distributions

$$p(\mathbf{x}) = \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Sigma})$$

$$\mathbf{x} = egin{pmatrix} \mathbf{x}_a \ \mathbf{x}_b \end{pmatrix} \qquad \qquad oldsymbol{\mu} = egin{pmatrix} oldsymbol{\mu}_a \ oldsymbol{\mu}_b \end{pmatrix} \qquad \qquad oldsymbol{\Sigma} = egin{pmatrix} oldsymbol{\Sigma}_{aa} & oldsymbol{\Sigma}_{ab} \ oldsymbol{\Sigma}_{ba} & oldsymbol{\Sigma}_{bb} \end{pmatrix}$$

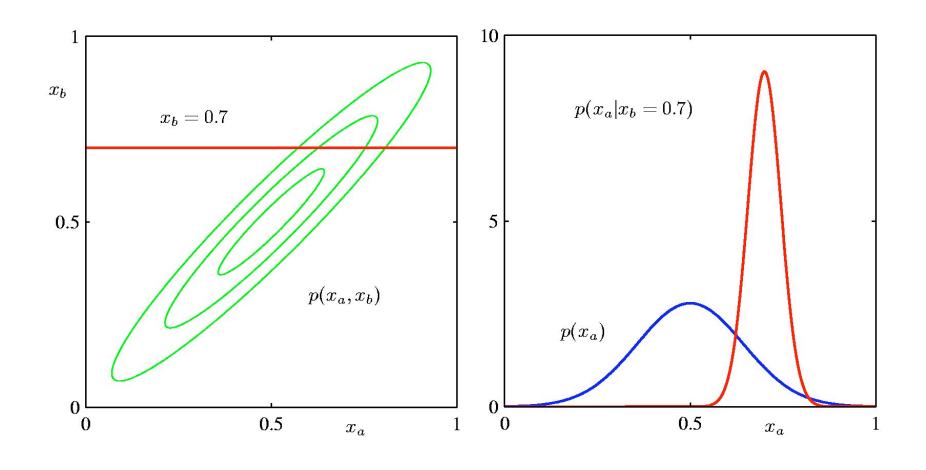
$$oldsymbol{\Lambda} \equiv oldsymbol{\Sigma}^{-1} \qquad \qquad oldsymbol{\Lambda} = egin{pmatrix} oldsymbol{\Lambda}_{aa} & oldsymbol{\Lambda}_{ab} \ oldsymbol{\Lambda}_{ba} & oldsymbol{\Lambda}_{bb} \end{pmatrix}$$

Partitioned Conditionals and Marginals

$$egin{aligned} p(\mathbf{x}_a|\mathbf{x}_b) &= \mathcal{N}(\mathbf{x}_a|oldsymbol{\mu}_{a|b},oldsymbol{\Sigma}_{a|b}) \ oldsymbol{\Sigma}_{a|b} &= & oldsymbol{\Lambda}_{aa}^{-1} = oldsymbol{\Sigma}_{aa} - oldsymbol{\Sigma}_{ab}oldsymbol{\Sigma}_{ba}^{-1}oldsymbol{\Sigma}_{ba} \ oldsymbol{\mu}_{a|b} &= & oldsymbol{\Sigma}_{a|b}\left\{oldsymbol{\Lambda}_{aa}oldsymbol{\mu}_{a} - oldsymbol{\Lambda}_{ab}(\mathbf{x}_{b} - oldsymbol{\mu}_{b})
ight\} \ &= & oldsymbol{\mu}_{a} - oldsymbol{\Lambda}_{aa}^{-1}oldsymbol{\Lambda}_{ab}(\mathbf{x}_{b} - oldsymbol{\mu}_{b}) \ &= & oldsymbol{\mu}_{a} + oldsymbol{\Sigma}_{ab}oldsymbol{\Sigma}_{bb}^{-1}(\mathbf{x}_{b} - oldsymbol{\mu}_{b}) \end{aligned}$$

$$p(\mathbf{x}_a) = \int p(\mathbf{x}_a, \mathbf{x}_b) d\mathbf{x}_b$$
$$= \mathcal{N}(\mathbf{x}_a | \boldsymbol{\mu}_a, \boldsymbol{\Sigma}_{aa})$$

Partitioned Conditionals and Marginals



Bayesian Linear Regression (1)

Define a conjugate prior over W

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0).$$

Combining this with the likelihood function and using results for marginal and conditional Gaussian distributions, gives the posterior

$$p(\mathbf{w}|\mathbf{t}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\mathbf{m}_N = \mathbf{S}_N \left(\mathbf{S}_0^{-1} \mathbf{m}_0 + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{t} \right)$$

 $\mathbf{S}_N^{-1} = \mathbf{S}_0^{-1} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$

Bayesian Linear Regression (2)

A common choice for the prior is

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I})$$

for which

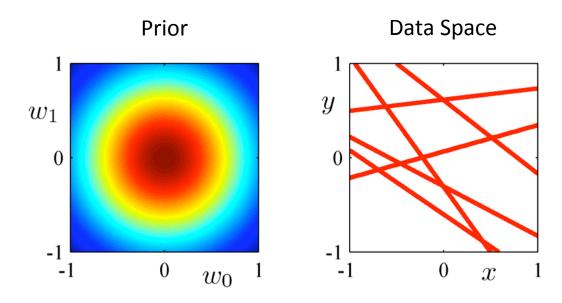
$$\mathbf{m}_N = \beta \mathbf{S}_N \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}$$

 $\mathbf{S}_N^{-1} = \alpha \mathbf{I} + \beta \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}.$

Next we consider an example ...

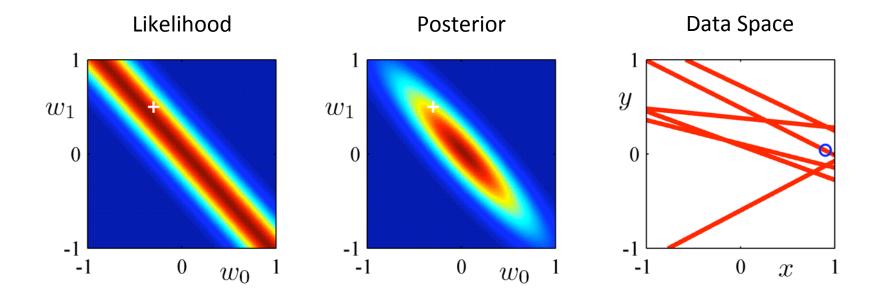
Bayesian Linear Regression (3)

0 data points observed



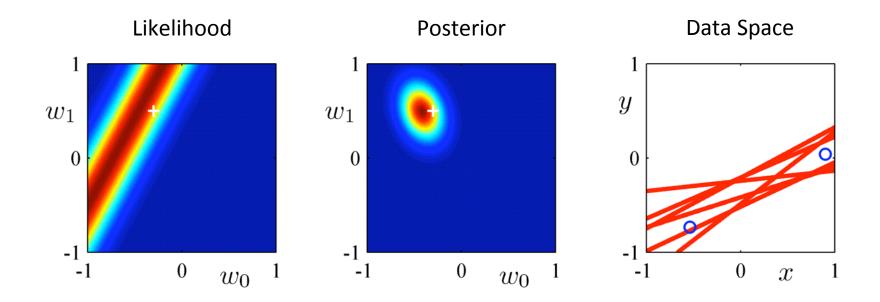
Bayesian Linear Regression (4)

1 data point observed



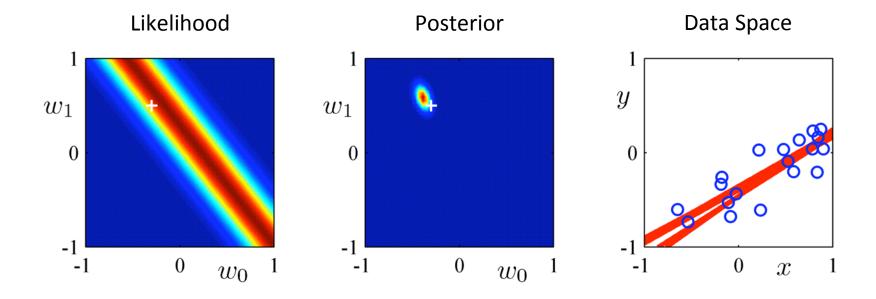
Bayesian Linear Regression (5)

2 data points observed



Bayesian Linear Regression (6)

20 data points observed



Regularized Least Squares (1)

Consider the error function:

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

which is minimized by

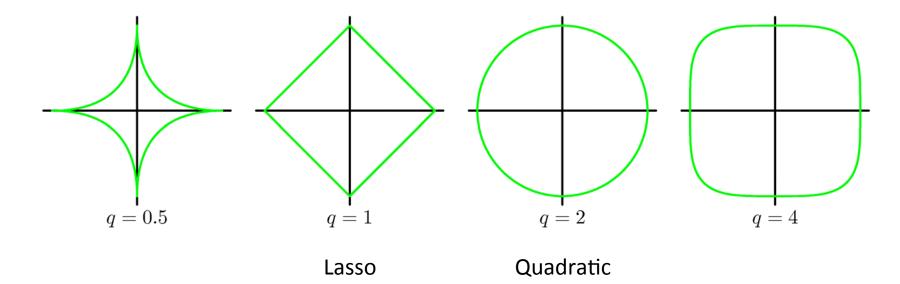
$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

is called the regularization coefficient.

Regularized Least Squares (2)

With a more general regularizer, we have

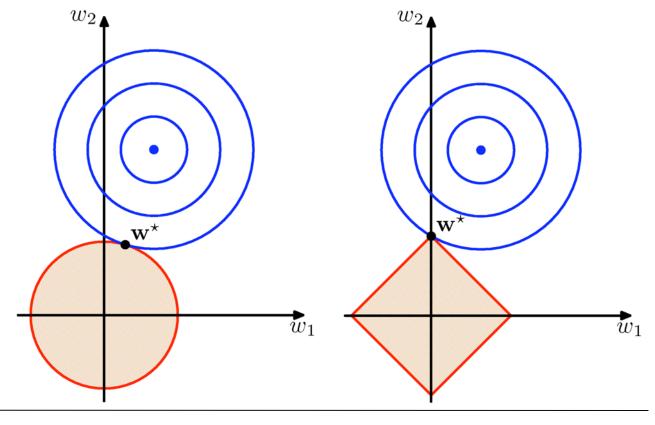
$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$



Regularized Least Squares (3)

Lasso tends to generate sparser solutions than a quadratic

regularizer.



Predictive Distribution (1)

Predict t for new values of x by integrating over w:

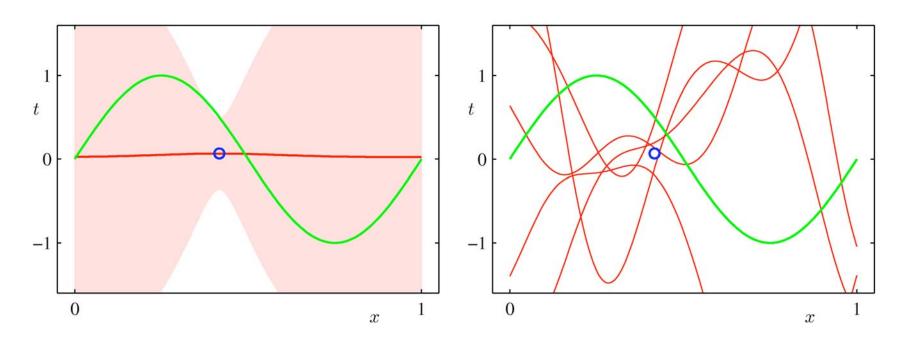
$$p(t|\mathbf{t}, \alpha, \beta) = \int p(t|\mathbf{w}, \beta)p(\mathbf{w}|\mathbf{t}, \alpha, \beta) d\mathbf{w}$$
$$= \mathcal{N}(t|\mathbf{m}_N^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}), \sigma_N^2(\mathbf{x}))$$

where

$$\sigma_N^2(\mathbf{x}) = \frac{1}{\beta} + \boldsymbol{\phi}(\mathbf{x})^{\mathrm{T}} \mathbf{S}_N \boldsymbol{\phi}(\mathbf{x}).$$

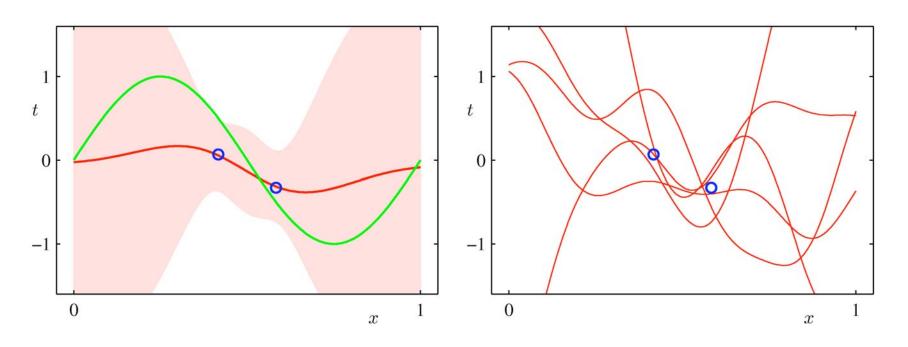
Predictive Distribution (2)

Example: Sinusoidal data, 9 Gaussian basis functions, 1 data point



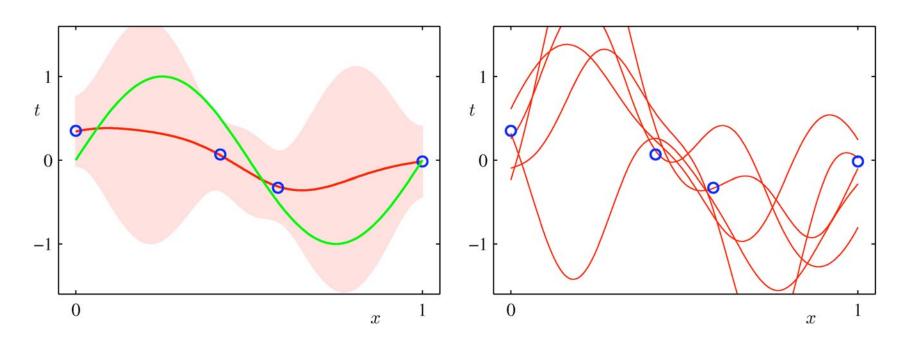
Predictive Distribution (3)

Example: Sinusoidal data, 9 Gaussian basis functions, 2 data points



Predictive Distribution (4)

Example: Sinusoidal data, 9 Gaussian basis functions, 4 data points



Predictive Distribution (5)

Example: Sinusoidal data, 9 Gaussian basis functions, 25 data points

