
Your
peo-
p a

verall
r-

uct
 you

oup.

nto
g,
o
s, to
they

sor
ing

t of
hould

.

ould
 that

cally.
 to
mer-

 pro-
PROJECT HANDOUT
Software Systems Design

CS190, Spring 2000
Steven Reiss

Welcome to CS190. In this course we attempt to develop USEFUL software systems.
goal will be to develop a system that is useful, friendly and powerful enough so that 
ple will actually use it. You are going to work as teams of around 10 people to develo
single software system. Everyone is expected to contribute to the specification and o
design of the software. Moreover, each individual will be responsible for particular po
tions of the detailed design and implementation of the overall system. The final prod
should be a system that everyone will want to use. This course will be intensive, and
will be expected to strictly honor the various deadlines, both individually and as a gr
Failure to do so will probably result in the failure of the project which will result in an
appropriate grade for everyone in the project.

TEAMS

CS190 is a course where you will work in teams. The class will be divided early on i
groups of about ten students each. These groups are responsible for finding, definin
designing, and building a software system. Much of the course will involve learning t
work effectively in teams and as a team. Teams are expected to organize themselve
hold meetings out of class as appropriate, and to determine and solve problems as 
arise.

PROJECT

Project(s) will be determined by a vote of the team (subject to approval of the profes
and TA). Any project that is chosen or that you want to propose must meet the follow
criteria:

• It must be something that other people will use. This encourages you to have a se
users to get requirements from other than yourself. It also means that the project s
be something new, e.g. something that doesn’t already exist on the target platform

• It must be something that can be scaled to a large project (i.e. larger than a group w
typically expect to get done in one semester). We want to teach aspects of design
encompass systems that are commercial in scale even if we can’t build them practi
Moreover, we want to stress design for extensibility, i.e. designing a system so as
anticipate change. The scale should be roughly thought of as that of a typical com
cial PC product.

• The project must be amenable to being divided into logical components for group
gramming. This will typically be the case for a large enough projects.
January 27, 2002 1



in-

et of
f the
 mem-
with
n a
nal or

ux,
r that
h a
gdb
e and
ry
is.

 one
Basi-

hat
think-
ovide
-
ond

r and
and
em

uld

troni-
uter

ur
the
and
ns
on
• The project must be suitable for implementing in Java or C++ on Sun, Linux, or W
dows platforms.

One way of meeting these criteria that we will use is to ensure that the project has a s
ready customers. To that end, the project must be sponsored by someone outside o
course. This could be a faculty member in CS who needs something done, a faculty
ber in any other department at Brown, an outside company, or any other organization
an interesting problem. If you just build a system for yourself to use you will miss out o
lot of what goes on in software engineering and the experience wont be as educatio
as fulfilling.

As an example of a project, I would suggest implementing a decent debugger for lin
something that will replace gdb. The principal goals here would be to have a debugge
works correctly for C++, shared libraries, and multiple threads. It should provide bot
textual and a graphical user interface. It should provide all the capabilities of dbx and
through a logical and not too cluttered user interface. It should be designed to handl
control multithreaded and multilingual applications. Extensions would include memo
checking, profiling capabilities, data structure display, and race detection and analys

Another example project comes from Mike Pesta, the registrar at Brown. Brown has
of the most antiquated, inefficient, and messy registration processes in the country. 
cally everything is done manually, nobody (students, faculty and the registrar) knows w
is going on at any time, and everything is sure to get messed up. Brown is currently 
ing about how to replace this system with a computer-based approach that would pr
everyone with instant information, would offer fair ways of dealing with limited enroll
ment classes, and that could accommodate the Brown curriculum. While it is way bey
the scope of this course to build such a system, it would be very useful to the registra
to Brown if someone would build a prototype system that would let students, faculty 
the registrar see what things might look like and how things might work. Such a syst
would emphasize what the user interfaces to the different groups would look like and
might not provide the security, integrity, and data accessibility that the final system wo
offer. It would, for example, allow experimentation with different ways of dealing with
limited enrollment courses and with how permission signatures can be obtained elec
cally. It would also help convince the faculty, especially those that might not be comp
literate, that they should want and could effectively use such a system.

The actual specification of the project (i.e. what it will actually do) is limited only by yo
and your team’s imagination and the constraint that it be fully working by the end of 
semester. You should think of what a minimal system implementation should provide,
you should dream of what a fully extended, lots-of-bells-and-whistles-type applicatio
would provide as well. From a commercial point of view, we will be implementing versi
0.1 of the system, but designing for version 6.0.
January 27, 2002 2



n the
of
f hype
e it is,

rove-
it is a
e

er but

ently
nd

nts

d
ing

ing
 pro-
ncre-

ility
is
t

 and

t all
ping
ecked
errors
aving
EXTREME PROGRAMMING

There are many approaches to software engineering. One that has been proposed i
last few years in XP or extreme programming. Extreme programming contains a lot 
good ideas (and some that are probably not so good). It has been enveloped in a lot o
and not that much substance. There have been a few experiments to see how effectiv
with mixed results — some show significant improvement while others show no imp
ment or some degradation in the software development process. In any case, since 
viable approach to team projects, we are going to use it more or less to construct th
projects.

Extreme programming consists of a set of ideas that are generally presented togeth
that can actually be separated and used individually. These include:

• Strong interaction between the developers and the customers. This comes from cus-
tomer-oriented application development and has proven itself successful independ
as long as you can find customers who are willing to commit the amount of time a
effort that is needed to make it work.

• Using stories to specify system requirements. This comes from the use of scenarios to
do software requirements analysis. It is a worthwhile, but probably incomplete
approach. We will use it but will probably augment it with some standard requireme
and specifications techniques.

• Testing everything as you go. This is a good idea in and of itself. It involves design an
coding for testability as well as developing test programs and cases while develop
the code.

• Small releases. The idea here is to get some initial version of the system up and runn
as soon as possible and then to incrementally update that until the final system is
duced. This is a combination of prototyping, a spiral-model of development, and i
mental development. While a good idea in practice, it takes a solid initial design to
make it work smoothly — the initial design must take into account all the extensib
that will be required later on, some of which will not be known at the time. Making th
work also requires doing a lot of planning both in advance and as the developmen
progresses.

• Code simplicity. Simplicity is something that is impressed on the students in CS32
is known as a good idea in general. The fact that XP endorses it is a plus for XP.

• Pair Programming. This might be the most controversial aspect of XP. It states tha
programming should be done by two people working together at a keyboard, one ty
and one looking over the shoulder. This has the advantage of having the code ch
as it is typed — something that should reduce both syntactic and some semantic 
early on. It has the disadvantage of requiring both persons to be present and only h
one of them work. It is something we will try and see how it works.
January 27, 2002 3



e of
cted

The
ourse.

ill

nd

an-
l be
o
to dif-

d a
has to
ct of
s a
ssary.

will
nsors

xpand

ble for
he
e XP
riori-
ere

r
dable

hould
duc-

riate

his
this

devel-
nents
COURSE MECHANICS

This project will be done using an object-oriented language (Java, C++ or C#) on on
the platforms available in the department (Sun, Linux, or Windows). You are be expe
to write efficient programs that will make use of all the tools that are available to you.
use of appropriate languages, libraries, and tools should be considered part of the c

We will form teams early in the semester (within the first week of classes). Teams w
consist of ten students each (more or less). While we hope to keep the teams intact
throughout the semester, we will allow some flexibility and will let people move arou
during the early part of the semester if necessary.

The first job of the team will be to organize itself. Each group will choose a project m
ager and a project librarian for their project. The project manager is the one who wil
responsible for coordinating and supervising everyone. She/he will have the power t
make modifications to the design or specifications and to assign or reassign people 
ferent tasks. The project librarian will be the individual responsible for maintaining a
project notebook and eventually coming up with user documentation, both on-line an
user’s manual. Note that responsibility here does not necessarily mean that he/she 
do the actual work, just coordinate it. Everyone else will be assigned a particular aspe
the implementation as their responsibility. Note that we expect each group to work a
coordinated team, with people helping out, providing feedback, etc. to others as nece

The second job will be to choose an appropriate project. The best way of doing this 
probably be to have individuals or small teams go out and find project ideas and spo
and then to discuss these with the rest of the team to ascertain the level of interest, e
on ideas, find additional sponsors, or come up with additional projects.

Once the project is discussed among the team members, each team will be responsi
developing a requirement document for the project. This will be done in two parts. T
first part will list the user requirements. This should be done in terms of stories (see th
book for details) as well as a list of the desired behaviors of the system along with p
ties for these behaviors. The second part will detail the requirement specifications. H
you will state what it is that will actually be built (as opposed to what the customers
wanted built). This should again be done in terms of stories, appropriate pictures (fo
example diagrams of the proposed user interfaces and system data flow), and a rea
English description of what is to be done. This will form the basis for all later system
development. The team can propose multiple possible projects at the first stage, but s
settle on a single project (with the help of the professor and TA if needed) before pro
ing the requirements specification. There will be in class presentations (with approp
feedback) for both the initial project requirements and the project specifications.

The next stage in the course will involve developing a top-level design for the project. T
should outline how the system is to be built, what are the major components, and how
is going to be done in an object-oriented fashion. Each team will be responsible for 
oping an on-line design (using UML as appropriate) that describes the major compo
January 27, 2002 4



ing.

the
ast a
ser
 the
tion

of
 release
f the
oping
is also
ting

te
d
r.

d of
 and
half

d.

ns as
ple).
tan-
ct to
tc.

uld
your
jects

dom
and provides an incremental implementation strategy in line with extreme programm
This will be handed in.

The top-level design will then be the basis for an initial (minimal) implementation of 
project. This implementation does not have to do that much, but it should provide at le
kernel that the system can be developed on top of. It might, for example, provide a u
interface skeleton or a default back end as appropriate. We are targeting March 1 as
date where this version will be operational. At that time each team will give a presenta
of their design and development plans along with a demonstration of the system.

The remainder of the course will involve extending this initial version to a final version
the system using a series of releases. Tentatively we have scheduled a new system
each Friday and will provide class time for the team to demonstrate the functionality o
release, discuss the design issues that arose in building it or that are involved in devel
the next release, and get feedback and ideas from the rest of the class. Each team 
responsible for showing these releases to their customers and obtaining and presen
appropriate feedback from this source as well.

Note that each release should contain not only the working code, but also appropria
design and user documentation. The project librarian is responsible for gathering an
organizing this information. It will be checked periodically by the TA and/or professo

The final systems (i.e. full functionality), should be done by the public demo at the en
reading period. Everything should be implemented by then (or completely forgotten)
almost all bugs should have been found and eliminated. This will give us a week and a
for formal user testing, polishing, and leeway in case deadlines are otherwise misse

MANAGEMENT

You will find that CS190 is as much a course in management and interpersonal relatio
it is a course in programming. This is especially true as groups get large (i.e > 5 peo
The effort that is required for communication and coordination within a group is subs
tial. The project managers that are chosen will effectively be the class dictators (subje
being overruled by the professor or TA), who will have the final say in all decisions, e
While democracy is nice in practice, it tends not to work well in software design.

PROJECT TIMETABLE

• 1/25 Project Ideas: Everyone in the class is responsible for coming up with one or
more project ideas at this point. You need not have a particular customer, but sho
have one or more customers in mind. You should be prepared to briefly describe 
idea to the class. You should also be prepared to briefly describe the types of pro
you might be interested in working on.

• 1/28 Team Selection: Based on peoples project preferences, friendships, and a ran
number generator, we will divide the class in teams of around 10 students each.
January 27, 2002 5



ne
s that
and a
pre-

rip-
ld

t; the
eeded
ould

ld be
out-
e XP
rt of

g
the

e sys-
at

le-
lity,
ere
ns of

e sys-
ek,
d for
hould

y
an
show
• 2/1 List of Requirements: Each team is responsible for providing a description of o
or more possible projects from the customer’s standpoint by this date. This mean
there should be one or more identified and committed customers, a set of stories,
list of what the system might do, prioritized as appropriate. There will be in-class 
sentations of the proposed projects in class on 2/4.

• 2/11: Specifications Document: Each team will choose one of the projects that was
described in the previous presentation and will develop a relatively complete desc
tion of the software system they propose building by this date. This proposal shou
include a description of the proposed system and how it will be implemented. The
description should include a discussion of the objectives and how they will be me
inputs, outputs and actions that the system performs, complete with pictures as n
for understanding; and a discussion of the user’s model of the system. The latter sh
be enough to give the reader a feel for whether the system will be useful, and shou
done in terms of the story motif used by XP. The implementation discussion should
line a strategy whereby a core system can be built and then extended to achieve th
concept of small releases. The specifications will be discussed by the class as pa
your (and others) presentations, and should be amended appropriately.

• 2/20: Top-level Design Proposals: Each team is responsible for developing and turnin
in an implementation framework for their project by this date. This should describe
major components of the system, and provide a detailed strategy for developing th
tem in a series of releases. The actual design should be a 5-10 page document th
includes lots of pictures and stories and provides:
* A user interface specification, with diagrams if appropriate.
* A functional specification.
* A module breakdown for the implementation, with an interconnection diagram.
* A proposed implementation schedule.
* A breakdown of responsibility for the various components.

• 3/1: Initial System Release: On this date each team is expected to have an initial imp
mentation of their system. Such an implementation might have very little functiona
but it should provide the framework on which the rest of the system will be built. Th
will be in-class presentations of the design of the system along with demonstratio
the initial prototype.

• 3/8, 3/15, 3/22, 4/5, 4/12, 4/19, 4/26: Next System Release: Each Friday following
the initial system release will be devoted to analyzing the subsequent release of th
tem. This will include a presentation by the team of what was done during the we
what design problems arose and how they were solved, as well as what is planne
the next release and the design issues that are involved there. The presentation s
also include a demonstration of the system in its current state.

• 5/8: Public Demo: The “final” release of the system (version 1.0) should be done b
this point. We will organize a public event (with refreshments) so that each team c
present its project to the rest of the department as well as potential customers and
off their work.
January 27, 2002 6



rd
d
ill be
their
• 5/16: System Submission: This is the final date for submitting the system (it can be
submitted any time after the public demo). The final submission should include ha
copy of all the code, the design documents, and the user documentation. It shoul
include evaluations of the project from each team member (these are private and w
kept so). It should also include a statement from the projects’ customer describing
impression of how well the team did and how well the project meets their needs.
January 27, 2002 7


	PROJECT HANDOUT
	Software Systems Design
	CS190, Spring 2000
	Steven Reiss
	TEAMS
	PROJECT
	EXTREME PROGRAMMING
	COURSE MECHANICS
	MANAGEMENT
	PROJECT TIMETABLE

