The FORCE

The Elow Of Regulated C Expressions

Top-Level Design

Author: Michael Pellauer
Package Overview

The FORCE is composed of five major packages. First isthe Main Application, which
consists of top-level GUI such as menus, and is responsible for project management. Next
isthe GUI Builder, which encapsulates al creation and layout of GUI elements. Third is
the CLUI Builder, awrapper around Command-Line projects. Most important is the
Graph Builder, which handles actual graph construction and management. To avoid
redundant code information in memory, al actual code information is managed by a Code
Factory package, which uses the “nifty counter” technique to keep redundanciesto a
minimum.

‘Main Application‘

‘GUI Builder‘ ‘CLUI Builder‘

\ G aph Bui | der }

|
‘ Code Factory ‘

Top-Level Package View

Main Application Components

The Main Application package is devoted to tying together the other components of the
program, rather than containing functional components itself, hence the number of
componentsis relatively low.

Mai n Application
|
‘Top- Level GU

Settings & ‘ New Proj ect
Pr ef erences

To GUI/CLU Builder...

Main Application Components

The Top-Level GUI component encapsulates the menus and any other appropriate
elements, such asatoolbar. NOTE: This design assumes that all GUI elements will be
implemented with the GTK toolkit.

cl ass FORCETopGU {

public:
/] Cal | backs for Menu Functions
static void Fil eNewCB(& kW dget * wi dget, gpointer data);
static void FileOpenCB(&G kW dget * wi dget, gpointer data);
static void FileC oseCB(G kW dget* wi dget, gpointer data);

pr ot ect ed:
//Links to other conponents
FORCESettings *settings_;
FORCEPr oj ect Manager *proj man_;
/1 The Menus Thensel ves
G kW dget *nmenul;

b

It must also include a component which is used to change overall Settings and
Preferences. These include color highlighting of different node types, and advanced
options such as using real C names of functions.

cl ass FORCESetti ngs{

public:
/] Cal |l backs for GU Elenents
static void highlightCB(G kW dget* wi dget, gpointer data);
static void nanmeToggl eCB(& kW dget * wi dget, gpointer data);

pr ot ect ed:
/' The actual options;
bool ean hi ghli ghti ng;

/I The Dial og Box Conponents Thensel ves
G kW dget *1 abel ;

Finally, it must contain a New Project Manager which helps the user create new projects.
It encapsulates a dialog box where the user is presented with the option to name the
project, select the directory its stored in, and select specia libraries for inclusion.
Depending on whether the users selects a GUI-based project or not, the CLUI-builder or
GUI-builder packages are launched.

cl ass FORCEPr oj ect Manager {

public:
/] Cal |l backs for GU Elenents
static void FileSel ect CB(& kW dget* w dget, gpointer data);
static void LibraryCB(& kW dget* w dget, gpointer data);
static void NameCB(G kW dget * wi dget, gpointer data);

pr ot ect ed:
//Links to other conponents
FORCECLUI Bui | der *cl ui _;
FORCEGUI Bui | der *gui _;
/1 The Di al og Box Conponents Thensel ves
G kW dget *1 abel ;

1
CLUI Builder Components

The CLUI Builder package represents an abstraction around command-line programs. As
such, it doesn’t need to do much work. It smply handles code generation appropriate to
set up amain() function, then tells the Graph-Builder to begin generation.

cl ass FORCECLUI Bui | der {
public:
FORCECLUI Bui I der (); //Set up stuff for progranmm ng

voi d GenerateCode(FileHandle *f); //First generate stuff for main()
/1 then tell Code Builder to generate
/1 its stuff. Then put in ending stuff.

pr ot ect ed:
/1Link to the G aph Buil der
FORCEG aphBui | der *gr aph;

|3
GUI Builder Components

The GUI Builder package includes every component related to the creation and layout of
graphical widgets, and must handle generation of appropriate C code to set up the UI.

GUl Bui | der
W dget .
Pal ette Design Area

‘W dget Li st

To G aph Builder...

GUI Builder Components

The Widget Palette component encapsulates atool bar of toggle buttons that allows the
usersto select different widgets. When the user clicks in the Design Area, the appropriate
widget is created.

cl ass FORCEW dget Pal et t e{

public:
/] Cal | backs for the toggle buttons
static void Sel ect Tool CB(& kW dget* wi dget, gpointer data);
static void ButtonCB(&G kW dget* w dget, gpointer data);
static void Toggl eButtonCB(G kW dget* wi dget, gpointer data);
static void CheckBoxCB(G kW dget * wi dget, gpointer data);
static void Label CB(G kW dget* wi dget, gpointer data);

|/ Accessor for enunerated type
FORCETool getCurrent { return current_; }
pr ot ect ed:
FORCETool current_; //enunerated type of tools.
//Links to other conponents
FORCEGUI Bui | der *gui _;
/1 The Toggl e Buttons Thensel ves
G kW dget *sel ect Button, *buttonButton;

The GUI Builder also includes a Design Area component, which represents an area for
the user to lay widgets out in, and is responsible for handling mouse interactions. When
the user clicks in the design area, it responds appropriately to the current tool. For
instance, if the current tool is the “button”, then it creates a new button where the user
clicks.

cl ass FORCEDesi gnAr ea{

public:
/1See if the user clicked on a w dget
FORCEW dget *determ neC icked(int x, int y);

// Create wi dget based on current tools.
void createWdget(int x, int y);

pr ot ect ed:
//Links to other conponents
FORCEGUI Bui | der *gui _;
FORCETool Pal ette *tool s_;
FORCEW dget Li st *wi dgets_;
/1 The Drawi ng Area
G kW dget *drawi ng_area_;

};

The Design Area utilizes another component, the Widget List. Thisis responsible for
keeping track of every widget that the user creates, including their location and options
such as labels. It must also keep track of the corresponding C code associated with
creating awidget, for code generation time. Each node of the list will have alink to a
Graph component (described below) which represents flow graphs the user has associated
with that widget. Because it would be inefficient to retain multiple copies of the datain
memory, this should be managed by pointers which are managed by a special Code
Factory package (described below).

cl ass FORCEW dget Li st {
public:
/| Generate Code for w dget
voi d gener at eCode(Fil eHandl e *h);

/| accessors
int getX() {return x;}
int getY() {return y;}

pr ot ect ed:
//Linked list link
FORCEW dget Li st *next _;
//Links to actual wi dget data
FORCEW dget | npl ement ati on *w dgets_;
/11ayout stuff
int x, int y;
//Link to code fromfactory
FORCECode *code_;

b
Graph Builder Components

The Graph Builder is the most complex package. First it must handle all aspects of graph
creation, layout, and connections. To accomplish this it has a Node Palette component, a
Library Palette component, and a Scope Window.

G aph Bui |l der

Node Li brary

Pal ette E@ Pal ette
G aph

To Code Factory...

Graph Builder Components

The Node Palette is used to select which type of node (see The FORCE User
Specifications document) they want to create. It is afloating toolbar that the user can
move at will. It consists of toggle buttons corresponding to each node type, when the user
selects anode, it becomes the current node type.

cl ass FORCENodePal et t ef

public:
/] Cal | backs for the toggle buttons
static void Sel ect Tool CB(& kW dget* wi dget, gpointer data);
static void Val ueNodeCB(G kW dget* wi dget, gpointer data);
static void Variabl eNodeCB(G kW dget* wi dget, gpointer data);
static void Functi onNodeCB(G kW dget* wi dget, gpointer data);
static void Conment CB(&G kW dget * wi dget, gpointer data);

!/ Accessor for enunerated type
FORCENode getCurrent { return current_; }
pr ot ect ed:
FORCENode current_; //enunerated type of nodes.
//Links to other conponents
FORCEG aphBui | der *bui | der _;
// The Pal ette Buttons Thensel ves
G kW dget *val ueButton, *sel ectButton;

};

The Library Paletteis afloating palette that alows the user to select from lists of
predefined functions to include in their graphs. It is sorted by different categories, and
includes user-defined functions that the user has created with the subgraph tool (See The
FORCE Specifications). The user selects one function. When a new function node is
created it defaults to the selected function. The palette displays information about the
function, its parameters, etc.

cl ass FORCELi braryPal ett e{

public:
/] Cal | backs for the toggle buttons
static void Sel ect Tool CB(& kW dget* wi dget, gpointer data);
static void Val ueNodeCB(G kW dget* wi dget, gpointer data);
static void Variabl eNodeCB(G kW dget* wi dget, gpointer data);
static void Functi onNodeCB(G kW dget* wi dget, gpointer data);

static void Conment CB(&G kW dget * wi dget, gpointer data);

/| Accessor for enunerated type
FORCETool getCurrent { return current_; }
pr ot ect ed:
FORCETool current_; //enunerated type of tools.
//Links to other conponents
FORCEGUI Bui | der *gui _;
/1 The List widgets that do the displaying.
G kW dget *category_list_, *function_list_;
/1 The |l abels to display help information.
G kW dget *hel p_area;

};

The Scope Window represents the current function scope the user is working on. It
primarily consists of a graph design area where the user actually constructs the graph. The
Scope Window is responsible for handling all user interaction, as well as actual creation
and layout of nodes, as represented by the Graph component (see below). Secondarily, it
utilizesaVariable Manager helper class, which is displays al variables available in the
current scope, and a Parameter Manager, which allows the user to add input parameters
and return values. If the user isinserting C Code, then it must be able to switch to a text
editing mode, with the help of a Text Area component.

cl ass FORCEScopeW ndow{

public:
/| Det er mi nes whi ch node user clicked on
determ nedicked(int x, int y);

/| Passes on to graph.
gener at eCode(Fi | eHandl e *f);

pr ot ect ed:
/lexternal 1inks
FORCEG aphBui | der *graph_;

/1" hel per” conponents.

FORCEDesi gnArea *desi gn_;

FORCEPar anet er Manager *parm_man_;
FORCEVar i abl eManager *vari abl e_man_;
FORCEText Area *text_editor_;

/1 The actual graph

FORCEGr aph *graph_;

/1 The design area

G kW dget *design_;

};

Finally, the Graph Builder package includes a component that represents the Graph itself.
This component is the most complex of any. It must include different classes to represent
value nodes, variable nodes, function nodes, conditional nodes, and while loops. Each
node must include links to other nodes for each input and output plug, as well as for nodes
that are attached by flow-of-control connections (see The FORCE Specification).

cl ass FORCEG aph { //Mstly Abstract Super C ass

public:
/I Actual ly generates the code appropriate to the node
gener at eCode(Fi | eHandl e *f);

|/ accessors
int getX() {return x;}
int getY() {return y;}

pr ot ect ed:
/1Link to next object in flow of control
FORCEGr aph *next _;
//Links to input
FORCEGr aph *i nput [MAX_I NPUT] ;
//Links to output
FORCEG aph *out put [MAX_QUTPUT] ;
//Position info
int x, int y;
//Link to actual code fromfactory
FORCECode *code_;

|3
Code Factory Components

The Code Factory Package is designed to get around the problem of redundant code. If
the user creates a program with fifty cals to strcmp, we do not want to keep 50 identical
copies of the data on strcmp code generation in memory. To prevent this, widgets and
nodes obtain their code from the Code Factory, which loads the information from a
database on physical storage employing the “nifty counter” technique. Thus thefirst time a
particular function is requested it loads it from disk, increments a counter, and returns a
reference to a FORCECode object. Every subsequent request is ensured to return a
reference to the same object, and the object is deleted if there are no more nodes using it.
cl ass FORCECodeFactory { //Mstly Abstract Super C ass
Publ C.// Returns code info for the specified wi dget type for GU .

FORCECode *get ButtonCode();

FORCECode *get Toggl eButt onCode();

FORCECode *get Label Code();
FORCECode *get Text Fi el dCode();

/IReturns code info for the speci fied function.
FORCECode *get Functi onCode(FORCEFuncti onl D f);

pr ot ect ed:
/INifty Counters for each wi dget type
i nt buttonCount, | abel Count, Text Fi el dCount ;

/INifty Counter Array by function ID.
int funcs[MAX_FUNCTI ON_I D] ;

/1 On-di sk- dat abase

Fi | eHandl e *dat abase;

b
A Word on Execution

As the specification stands, The FORCE is not designed to execute code visualy by
following routes. Such functionality could be added by atering the Code Generation
Factory to return scripted instructions rather than actual C code. An additional Executable
package could run the instructions, keeping track of the state of each variable and
branching appropriately.

However, thismodel cannot deal with “Code Nodes’ (see The FORCE Specification)
where a more advanced user has entered actual C code. This would require code parsing
which is beyond the scope of this project. Additionally, running would require the display
and control of multiple windows, say where a command-line program is running, or a
GUI-based program isin its main loop. Retrieving the interaction with the user through
these windows and back to The FORCE, and responding in an appropriate way is difficult
to say the least. The FORCE would have to generate and compile code that was much
more complex then what it is currently designed for, and this code would bear little
resemblance to what the user intended, defeating the goal of The FORCE as a C teaching
tool. Finaly, this interaction code would irreversibly wed the program to The FORCE,
making it completely unportable.

By programming with The FORCE the user is aready demonstrating a minimum
knowledge of flow-of-control. While dynamic running of code with visua response in the
graph could sometimes be a valuabl e teaching tool, the cost of adding this feature is smply
too high.

Schedule

3/5 Language Specification Finalized
3/12 Top-Level Design Finalized

3/17 Graph Builder GUI Prototype
3/24 GUI Builder GUI Prototype

4/5 Detailed Interface Design Finalized
4/12 Basic Node Creation, Connection
4/19 Basic Code Generation

4/21 Basic GUI Generation

4/23 Function Nodes, Subgraphs

4/26 Branches, Loops

4/29 Full Code Generation

5/1 Tentative Integration, Full GUI Generation
5/8 Full Integration

5/15 Donéel

