
 their
. The
head
ther as
y,
e

te
many
RCE
t

on

ow-
t the
f data

must

l. In
user

tion
, and
The FORCE
The Flow of Regulated C Expressions

A graphical programming environment for beginners learning the C language.
Authors: Jeff Alexander, Leonard Kirschen, Michael Pellauer

Specifications Document

Introduction

The FORCE is a graphical development environment designed to aid novice
programmers. One of the hardest barriers for beginners to overcome is learning to express
ideas in terms of the arcane pigeon-English semantics of modern programming languages
visual flow graphs of The FORCE aid users in making the transition from the ideas in their
to the implementation on the screen. The FORCE is not intended as a crutch to lean on, ra
a safe, exploratory environment where novices can experiment and devlop software quickl
without the fear of unintelligable compiler errors. Eventually, it should aid in transitioning th
user smoothly to the world of fully text-based coding.

From a specifications point of view, this means that The FORCE must strike a delica
balance between features and limitations. While the environment must be diverse and offer
features of C, the whole language cannot be supported unilaterally. Similarly, while The FO
includes a GUI builder, it is not intended to give the user unlimited control over every widge
and event. In the end, if a user becomes tired of the limitations of The FORCE and moves
succesfully to a standard text-based environment, then our program has been a success.

The Flow Graph

In The FORCE users program visually by constructing a graph which resembles a fl
chart. Nodes on the graph represnt data, and operations on data. The edges which connec
nodes determines the logical order in which operations are performed, as well as the flow o
from one operation to the next. The Flow Graph is the central feature of The FORCE, and
be flexible, yet robust; powerful, yet easy to use.

Flow

One of the central concepts novice programmers must grapple with is flow-of-contro
The FORCE flow is represented by connections between between nodes on a graph. The
literally maps out the path the program is going to take, including all branches, loops, and
recursion. Flow of control is represented by dotted lines with arrows to indicate which direc
control is flowing. These lines are connected to "terminals" on the sides of operations, data
functions, mapping a linear path the program will take.

ata-

t
ing a
in to
o

CE

me
al for
the
 and
-of-
Perhaps more important than the flow-of-control is the flow-of-data. In a computer
program the result of one calculation is often fed into another function, the result of both of
which is fed into a third function which prints it to the screen or stores it in a variable. This d
flow, as it is referred to in The FORCE, is represnted by solid lines which connect data to
functions that will be performed on it. Each node on the graph may include input and outpu
"plugs." the user creates a connection by clicking on the input plug of one node, and dragg
line to the output plug of another (or vice versa). The user may click the mouse button aga
put bends in the line, allowing for a cleaner layout. The FORCE immediately does checks t
make sure the connection is legal (ie that the user is not connecting two input nodes, or
connecting a string to a parameter that requires an int). If the connection is illegal The FOR
beeps and does not create the connection. The user may later "cut" connections either by
selecting them and pressing delete, or with the use of a special scissors tool.

By combining flow-of-control and data-flow, it is possible for the user to construct so
quite advanced programs. Undertanding the difference between the two types of flows is vit
succesful understanding and use of the flow graph paradigm. This is facilitated visually by
different types of lines, and the clear difference between "terminals" on the sides of nodes,
"plugs" on the top and bottom. In addition, the user must be guaranteed that when the flow

ir

ial tool
ph
, the
hich
e shift
is
d

control brings the program to a place where data-flow occurs, all data operations will be
performed before the program continues along the control path.

Nodes

Nodes are the building blocks which the user uses to construct the flow graph of the
program. Specifically, there are nodes to represent data, operations, functions, variables,
conditionals, and loops. The different types of nodes are created through the use of a spec
"palette," or floating window. The user selects a tool from the palette, then clicks on the gra
area of the flow-graph window, and a node is created at that point. Once a node is created
user has full control over its size and location through the use of a special selection tool, w
may also be used to delete nodes. The user may select multiple nodes by holding down th
key. When a node is moved all connecting lines move to stay attached to it. When a node
deleted, all connections to it are also deleted. The user may cut, copy, and paste nodes an
connections at will.

 types
al of

le

e an
 also

r of
umber

tical
lways
The most basic node is the value node. Value nodes are just that - values. The user
in a value, either an integer, double, char, or string. Connecting a line from the output termin
the node passes the value unchanged to the input of the next node.

More complex is a variable node. Users create variables with a special create variab
button, allowing them to specify information such as type and default value. When the user
creates a new variable node they indicate which variable it represents. Variable nodes hav
output node just like value nodes, which outputs the present value of the variable. But they
have an input node, allowing the user to change the variable's value.

The most important type of node is the function node, which represents predefined
functions and operations from standard C libraries. Function nodes have a variable numbe
input plugs - one for each parameter the function requires. They also can have a variable n
of output plugs, to account for situations such as returns by reference. Function nodes also
include user-defined functions, which are discussed later.

An important subset of functions are operator nodes, which represent basic mathma
operations such as addition and subtraction, greater-than and less-than. Operator nodes a
have two input plugs and one output plug.

tice
de
, the
e,
if it is

he
f
the
f the

hese

tions
, as
.
f
ibing
ivided
The FORCE inlcudes special types of nodes for flow-of-control. First is the if/else node. No
that this node is very different because it allows the flow of control to branch. The if/else no
takes one input - a boolean value. If the value is true the "if" branch is followed. If it is false
"else" branch is taken. The two branches reconverge at the special "end if" node. This nod
which has no input or output plugs, is created when the if/else box is created, and removed
removed - its only purpose is to reconnect the branch, acting as "}" in C.

The while-loop node is similar in that it also alters the program's flow of control. Like t
if/else node, it always is connected to an "end-while" node. However, notice that the flow o
control loops back from the "end while" to the while. As long as the boolean value given to
loop's input is true the loop continues. When it is false, execution proceeds from the point o
"end while" node.

Finally, users may annotate their graphs with the use of special comment objects. T
comments have no bearing on the function of the flow graph as a whole, but must be
incorporated into the final generated code.

User-Defined Functions

User-Defined functions used within a flow graph behave the same as the library func
discussed above. The function is represented by a single node, with input and output plugs
well as flow terminals. The number of plugs will vary with the number assigned by the user

Two types of user-defined functions exist within The FORCE. The sub-graph class o
functions consists of the specification of parameters, return values, and a flow graph descr
the function. When a user creates a new sub-graph function, a new window is presented d

e
 for
ntry
alue,
d are
w is

g a

e that
he

 user

he
nter C
 GUI,

re

on
ng in

for
tion

rom.
ow
ings,
into a few sections. First, an area on the side of the window provides a scrolling list of all
variables available within the current scope. An area is also provided to enter a name for th
function being defined. Next, at the top and bottom of the window, thin scrolling areas exist
specifying parameters and return values. These consist of a series of rows of type/name e
fields. A popup menu allows the user to choose an existing type for a parameter or return v
and a text edit field allows the entry of a name for the item. Variables created in this metho
made available in the variable list of the Graph Builder. Finally, the largest part of the windo
available for constructing the flow graph for the function.

Start and End terminal nodes are provided to define the beginning and end of the
function. Any pre-built nodes or user-defined nodes may be used in the sub-graph, includin
node representing the function being built, allowing for recursion.

Once the user has finished editing a sub-graph, checks must be performed to assur
the function signature does not match that of any existing signature, within the bounds of T
FORCE.

The other type of user-defined function available is the code function. As above, the
is presented with a window providing a means of entering both a function name, as well as
parameters and return values. Unlike the sub-graph editor, no variable list is present, and t
canvas for constructing a sub-graph is replaced with a text edit area. This area is used to e
code for the body of a function. Since parameters and return values are specified using the
only the body of the function is written in the text edit area. Upon code generation, the code
entered will be written directly into a code file.

Like in the sub-graphs, any user-defined function (graphical or code-based) may be
called, as well as any C accessible function available on the system. If additional libraries a
needed, fields will be provided in a project settings window to list additional compiler flags.
Restrictions on the signatures of sub-graphs also apply to code-based functions.

Once any user-defined function has been written, it becomes available in the Functi
Library (described below). The user creates calls to the function by choosing it from its listi
the Function Library, thus avoiding repeated “code”.

Function Library

The Function Library is the user's means of accessing all pre-built, and user-defined
function nodes available for use in a flow graph. The Function Library is responsible not only
providing a means of choosing a function, but also for informing the user of what each func
is used for.

The Function Library window is divided into three sections. Along the left side of the
window, a scrolling list presents the user with a number of categories of functions to chose f
Clicking an item in this list fills in another list, occupying the top right-hand side of the wind
with the functions available in the selected category. Example categories include Math, Str
Operators, and User-Defined. Below the function listing, another region, filling in the bottom
right, shows a brief description of a function when it is chosen from the function list.

n

ucture

ions

 the

ch

 large
used
Each function present in the Function Library is internally associated with a singleto
class representing the code to be created for that function.

Internal Representation Of Program

To store the program that a user generates, The FORCE must track a large data str
internally. This data structure will match closely the visual layout of each flow graph. It will
consist of nodes and connections between nodes, as well as a system for correlating funct
embedded within nodes with actual functions (and code for functions) themselves.

The data structure should be object oriented in nature, allowing for great flexibility in
type of information stored within it. Nodes in the data structure will represent flow control
constructs such as “while” and “if”, as well as generic function nodes.

The actual classes representing any user-defined function will be singletons, and ea
instance of, or call to, that function will simply be represented as a node in the graph with a
pointer to the singleton. It is important that graphs not be copied, as this could lead to very
memory requirements. Classes representing pre-built functions will have keys which can be

also
ions.

ition
ed.

r the
e code
upport-
ve the
hich
ction
mp()

tine
nction
reates
corre-

com-
hould
so be
feel for

the

the
utting
to a C

high-
s The
ade to
ments

the
hted
lues it
rsal
 all
to look up actual code in the function library when code generation time comes. These will
be used to look up parameter types, as described above in the section describing Connect

Another important piece of data stored in the data structure for a flow graph is the
physical layout of the graph. Rather than incorporating graph layout code, the absolute pos
of each element in the graph will be stored in the node and saved when the program is sav

The Code Builder

The Code Builder takes all the program’s function graphs and creates the C code fo
user’s program. The builder, given the data structure corresponding to the graph, creates th
for each node. The C code should be highly readable, using the same variable names and s
ing user comments. In the case where The FORCE’s reference to a function does not ha
same name as the corresponding C function (i.e. if The FORCE calls a function print(), w
appears as printf() in the code), a comment will be inserted which says what that the C fun
corresponds to on the graph and how the C function works (i.e. why we need a “!” before strc
). There will be an option for more advanced users to turn off such explanatory comments.

For programs created with the GUI builder, The FORCE’s output will have a main rou
which creates all the widgets and then defines the callback methods according to the fu
graphs specified by the user. For programs created with the CLUI builder, The FORCE c
the main routine as written by the user. In both cases, The FORCE generates the code
sponding to the appropriate nodes on the function graphs created by the user.

Each different graph will be defined as a different routine with an appropriate header
ment. Subroutines will be called just as they are in a regular C program, which means they s
have their prototypes declared at the beginning of the program. All such declarations will al
commented. By seeing such comments and how routines are separate, the user will get a
such concepts as modularity and scope.

Also created with the C code will be a makefile. The make file should allow support
standard make command for compilation as well as the traditional “make clean” command.

The Animator

The animator is responsible for executing programs within The FORCE by traversing
program graph the user has constructed, performing all of the appropriate operations, inp
values and displaying output, and behaving exactly as if the program had been compiled in
program and executed from a shell.

The major difference is that the animator represents the traversal of a flow graph by
lighting its different elements as they are traversed and executed. When animation begin
FORCE enters a special animation mode. While in animation mode no changes may be m
the current program, as it is being traversed and executed. As defined in the user require
document, the animation proceeds as follows:

When a program is executed, the user is shown the traversal of the graph beginning at
highest’s level’s start terminal. To show this traversal, each element will become highlig
when the program reaches it. When traversal reaches an element that requires input va
will go into a semi-highlighted state to represent that more information is needed. Trave
will then proceed up each input from left to right, evaluating each element in turn. Once

ra-
re are
ol

ser is
s
 this
lly,
ay

, to

allow
lude a
This

aths,
n be

ser is
mand

ll run
radi-
nked

she
and

ated.
ts, as
graphs
input values have been evaluated, the current element becomes fully highlighted, and t
versal proceeds down the output value(s). The element reverts to its default color. If the
no more output values to follow, execution continues down the appropriate flow-of-contr
connection, until the “end” terminal is reached.

In addition, when execution reaches the call of a user-defined subgraph function, the u
giving the option of bringing up this graph in a window and following the traversal of it. If thi
option is chosen, all execution of the higher-level graph is paused. If the user does not take
option, then the function is executed, but this execution is not represented to the user. Fina
when execution has been concluded, The FORCE leaves animation mode, and the user m
resume edititng their graph.

Menus

• File: The File menu should allow the user to open a new project (either GUI or CLUI)
load, to save, to save as, to print, and to quit The FORCE.

• Edit : The Edit menu allows standard cut, copy, and paste commands and will also
the user to undo and redo. Select all will also be implemented so that a user can easily inc
whole program as part of another program. We will also have a project settings option.
option, which may be under an “advanced” section, will allow the user to specify include p
library paths, or anything else that might be necessary for compilation. Different options ca
made available to specify the level of commenting.

• Program: The Program menu deals with commands relevenat to the program the u
creating. They will have the option to Execute the current program. The Generate Code com
tells The FORCE to generate the C code for his program. A Compile Generated option wi
“make” on the generated code. There will also be a “clean” option-- the equivalent of the t
tional “make clean” command-- and a Run Generated option. This option will execute the li
executable after compilation.

• Windows: The Windows menu allows the user to display or hide any windows he or
may or may not want shown. Such windows will include the tool palette, the function library,
the variable list.

File Format

In order to load and save files, a file format for representing function graphs must be cre
It is important that this file format keep track of the location on the screen of all its componen
graphs that look different can represent the C program. The user should see his or her
when The FORCE loads a file.

	The Animator

