
s of
orre-

control
orrect,
com-

ional
build
diate

at-
,
xecut-

ro-
hand

the
reat-

d data.
at make

lugs.”
necting
ample,
The FORCE
The Flow of Regulated C Expressions

A graphical programming environment for beginners learning the C language.
Authors: Jeff Alexander, Leonard Kirschen, Michael Pellauer

Introduction
• What is The FORCE?

The FORCE is a tool intended for novice programmers that aids in the proces
developing simple C programs by allowing users to manipulate graphical objects which c
spond to C semantics. The FORCE easily expresses powerful concepts such as flow of
and parameter passing. Programs generated by The FORCE are always syntactically c
allowing beginners to focus on implementation rather than sifting through endless obscure
piler errors.

• What isn’t The FORCE?
Graphical flow-based programming represents a complete paradigm shift from tradit

text-based coding. However, The FORCE is not intended for experienced programmers to
large scale software. Rather, its unique flow-based “diagrams” allow novices and interme
programmers to easily move from the design process to implementation.

Requirements Overview
• Program Builder : This is the environment used to “write” the program. It involves cre

ing a flow chart-like graph of regulated C expressions. Thisflow graphrepresents the operators
conditionals, loops, functions, and data. The FORCE should be able to traverse the graph, e
ing all of the appropriate code. (Priority: 1)

• Code Builder: Additionally, the user must have the option to generate a working C p
gram which is completely independent of The FORCE and all but indistinguishable from a
written program. The code must be readable, well structured, and commented. (Priority: 2)

Program Builder
The Flow Graph: The flow graph is the fundamental core of The FORCE. It allows

user to build software without writing a single line of code. Instead, the user programs by c
ing and connecting graphical elements which represent basic C operations, functions, an
These elements are then connected to form a series of operations, conditions, and loops th
up a complete program.

Each element of the program should be represented as a box with input and output “p
These plugs are strongly typed and correspond to parameters and return values. By con
output plugs to input plugs, the user can pass data from one operation to the next. For ex

nections
ntacti-

to
l con-
graph

egin-
high-
t values
l will
t val-
oceeds
t val-

l the

prior-
, and
func-
SI C
graph

insert

terface
iven by
o that

e.
the following diagram illustrates simple addition and subtraction.

This snippet would output “8”.
The types of parameters and return values must be checked as the user creates con

between elements. This will ensure that the code created by The FORCE constitutes a sy
cally valid C program.

An additional type of connection, known as a “flow-of-control” connection, will be used
connect disparate elements of the graph without the passing of data. These flow-of-contro
nections will be used to represent branches and loops in the graph. Flow-of-control within a
will begin at a special “start” terminal and end and a special “end” terminal.

Execution: When a program is executed, the user is shown the traversal of the graph b
ning at the highest’s level’s start terminal. To show this traversal, each element will become
lighted when the program reaches it. When traversal reaches an element that requires inpu
it will go into a semi-highlighted state to represent that more information is needed. Traversa
then proceed up each input from left to right, evaluating each element in turn. Once all inpu
ues have been evaluated, the current element becomes fully highlighted, and traversal pr
down the output value(s). The element reverts to its default color. If there are no more outpu
ues to follow, execution continues down the appropriate flow-of-control connection, unti
“end” terminal is reached.

Language Features:Some language features that must be supported are base types (
ity 1), basic function calls (1), literals (1), loops (1), conditionals (1), operators (1), arrays (2)
recursion (5). There must be three types of subroutines. The first type is a call to a library
tion, such as strcmp() or exp(). The program must include the most common standard AN
functions (3). Secondly, the user must be able to define subroutines using the program
exclusively, effectively creating “sub-graphs” (4). Lastly, an advanced user must be able to
actual C code directly into special code elements of the graph (6).

Code Builder:
The code builder generates the C code for the program graph and the code from the in

builder. The code must be commented, and the names should be consistent with those g
the user. In addition, the code should be well organized and formatted in a clear fashion s
the code can be easily explored.

A low priority requirement is the generation of a Makefile to accompany the user’s cod

Additional Requirements:

10 5

 +
7

 –

 print

al pref-
r must
ld be
The user must be able to save a project and to reload it later. (7) There should be glob
erences and advanced options that the user can manipulate (8). At a lower priority, the use
be able to print out a flow-graph representing a function (10). Finally, special attention shou
given to creating a user friendly application, as this system is intended for novice users.

