

BulldozePopup: Creates a popup window querying the user if they want to destroy the

building they left clicked on while the bulldoze button was depressed.

clickedYes(): Is a slot connected to the button labeled “Yes”. Emits sendYes.

clickedNo(): Is a slot connected to the button labeled “No”. Closes window.

sendYes(): Is a signal sending to GUI the LogicPoint of the Building to be deleted. This

signal is connected to a slot in GUI.

class BulldozePopup : public QWidget
 Q_OBJECT

public:

 BulldozePopup(QWidget * parent=0, const char * name=0, Building* b);
 virtual ~BulldozePopup();

public slots:
 void clickedYes();
 void clickedNo();

signals:
 sendYes(LogicPoint* p);

ImageTextLibaray: This class contains all of the images to decorate GUI with. It’s
probably best to do it this way so there aren’t hard coded filenames and paths in
GUI. Plus it’s easily extendible if we wish to add more building and need to add
corresponding pictures. The text part corresponds to funny descriptions I (or
another group member) will write for each building, just like the Sims!

getImage(std::string imageName): Gets the QPixmap mapped under the name passed in.

getDescription(std::string imageName): Gets the QString mapped under the name passed

in.

class ImageTextLibrary {

public:

 ImageTextLibrary();
 virtual ~ImageTextLibrary();
 void load();
 QPixmap& getImage(std::string imageName);
 QString& getDescription(std::string name);

StatsPopup: This class is a popup window that displays the stats of the building left

clicked on when in “normal mode” (no non-view, non-speed buttons pressed).
 You can also buy available upgrades to the buildings from this window.

void okPressed(): Linked to the ok button. Tells the Building pointer to update the name

if the user has changed the name text box. Closes the window.

void buyPressed(): Linked to the buy button. Building told to upgrade.

class StatsPopup : public QWidget{
 Q_OBJECT

public:

 StatsPopup(GUI* gui, const char * name=0, Building* b);
 virtual ~StatsPopup();
 void listUpgrades();

public slots:
 void okPressed();
 void buyPressed();

VolumePopup: This is the window from which you can mute all sound effects or change

the volume with a volume slider.

void changeVolume(int value): This is called when the slider is moved. It emits
sendVolume, which is connected to a slot in GUI.

void mutePressed(): This is called when the mute button is pressed. Emits sendMute,

also connected to a slot in GUI.

void okPressed(): This is connected to the ok button. Closes window.

class VolumePopup : public QWidget{
 Q_OBJECT

public:

 VolumePopup(int currentSet, bool isMute);
 virtual ~VolumePopup();

signals:
 void sendVolume(int a);
 void sendMute(bool);

public slots:
 void changeVolume(int value);
 void mutePressed();
 void okPressed();

GraphicsSubclass: This class extends a QGLWidget, but the only functions I touch are

QWidget ones. Graphics will add functions later that will be the “meat” of this
class. Reimplemented to control mouseEvents.

mouseReleaseEvent(QMouseEvent* e): This emits a mouseRelease signal which is

picked up by GUI. This is needed to place buildings, paths, and props as well as
to destroy buildings and find their stats.

mousePressEvent(QMouseEvent* e): This emits a mousePressed signal which is

picked up by GUI. This is needed to find the button that is being held down
during a mouseMove event.

mouseMove(QMouseEvent* e): This emits a mousePressed signal which is

picked up by GUI. This is needed to preview building, path, and prop placement.

class GraphicsSubclass : public QGLWidget{
 Q_OBJECT

public:

 GraphicsSubclass(QWidget * parent=0, const char * name=0);
 virtual ~GraphicsSubclass();
 void mouseReleaseEvent(QMouseEvent* e);
 void mouseMoveEvent(QMouseEvent* e);
 void mousePressEvent(QMouseEvent* e);

signals:
 void mouseReleased(QMouseEvent* e);
 void mouseMoved(QMouseEvent* e);
 void mousePressed(QMouseEvent* e);

BudgetStats: This class creates a window that displays the budget and from where you
can change the budget. This class has a QWidgetStack that allows you to pick the
displayed top widget from a stack of them. By clicking on a button, school stats
are displayed. By clicking on another button, student body stats are displayed.
By clicking on a final button, the faculty are displayed and you can hire and fire
professors from that window. For Professor and Budget information, BudgetStats
asks GUI which in turn asks Logic.

setBudget(): Takes the changed budget stats and sends it to the GUI which sends it to

Logic. Does error checking to ensure entered texts are positive numbers. Pops up
a warning if not and resets faulty entry box.

hireProfessor(): Takes the professor highlighted in the QListBox and tells GUI to hire

professor. Called when hire button is pressed.

fireProfessor():Takes the professor highlighted in the QListBox and tells GUI to hire

professor. Called when hire button is pressed.

class BudgetStats : public QWidget{

public:
 BudgetStats(GUI* gui, char, const char * name=0);
 virtual ~BudgetStats();

public slots:
 void setBudget();
 void hireProfessor();
 void fireProfessor();

class GUI: public QWidget
{
public:
 GUI(QWidget *parent = 0, const char *name = 0);
 virtual ~GUI();

//updates the QLineEdit displays at every nextCycle call.
//gets information from Logic.
 void setUniversityName();
 void setGameDate();
 void setCurrentEnrollment();
 void setTotalMoney();

public slots:
 //right column button slots
 void addBuildingPressed();
 void addPathPressed();
 void addPropPressed();
 void bulldozePressed();
 void statsBudgetPressed();
 void volumePressed();
 void loadSavePressed();

 //time button slots changes the QTimer’s timeout signal frequencies
 void pauseTimePressed();
 void slothTimePressed();
 void lamaTimePressed();
 void cheetahTimePressed();

 //view button slots. GUI calls Graphics’s corresponding methods with the
//mouse location
 void zoom();
 void pan();
 void rotate();

 //graphics mouse event slots
 void graphicsMouseMoved(QMouseEvent* e);
 void graphicsMouseReleased(QMouseEvent* e);
 void graphicsMousePressed(QMouseEvent* e);

 //Called when QTimer’s timeout signal is emitted. The main game loop.
//Calls nextState in Logic.
 void nextCycle();

GUI: Okay, okay, going to elide tons of functions here! This is the main class which

creates the main window, handles most interactions between Logic and the popup
windows, communicates with Graphics and holds the timer/loop. The most
important functions are below, the others have short descriptions above them.

 void addBuildingPressed(): Opens up a BuildingSelectPopup and when a type is
selected from the popup, a preview of the building will appear when the mouse is moved.

 void addPropPressed(): Opens the PropSelectPopup and when a type is selected from
the popup, a preview of the building will appear when the mouse is moved.

 void statsBudgetPressed(): Creates a BudgetStatsPopup.

 void volumePressed(): Opens VolumePopup.

//The slot connected to the bulldoze popup. Tells Logic to get rid of
//building at point p.
 void bulldoze(LogicPointer* p);

 //Sends this to sound.
 void mute(bool a);
 void volume(int vol);

 // Receives which building was picked by user in
//BuildingSelectPopup
 void buildingSelected(int buildingType);

// Receives which building was picked by user in
//BuildingSelectPopup

void propSelected(int propType);

//for budget stats popup. Passes changes to Logic.
void hireProfessor(Professor* p);
void fireProfessor(Professor* p);
void setBudget();

//for budget stats popup. Retrieves the info to display
Budget* getBudget();
StudentBody* getStudentBody();
vector<Professor*> getProfessorsToHire();
vector<Professor*> getCurrentProfessors();
GameState* getGameState();

 void loadSavePressed(): Opens file dialogue. Straight Qt class.

 void graphicsMouseMoved(QMouseEvent* e): The mouse movements from the

graphics window. If the building, path, or prop button is pressed then moving the
mouse causes a preview graphic to be dragged along with the pointer. This
method calls on Graphics to do that. Moving while clicking on the middle button
causes the view to change, and here this class calls on Graphics to do that.

 void graphicsMouseReleased(QMouseEvent* e): The mouse release events from the
graphics window. This places the building, path, or prop button if the left mouse
button is clicked –supposing that the appropriate addBuilding, addProp, addPath
button is toggled (a call to logic). Opens a BulldozePopup if left clicked on a
building. Right clicking releases all buttons and clears all chosen building and
prop types.

 void graphicsMousePressed(QMouseEvent* e): Saves which mouse button was last
pressed for reference during a mouse move event.

<Note: PropSelectPopup will have the exact same functionality, except the Qt window
may look a bit different, and therefore I need two different classes.>

BuildingSelectPopup: The window that holds thumbnails, stats, and descriptions of the

buildings it is possible for the user to buy. Users click on the thumbnails to bring
up descriptions and to activate that building as their “selection”. This choice is
passed on to the GUI which will place the building the next time the user clicks
on the graphics window.

void buildingSelected(QMouseEvent* e, int indexNumber): Connected to each
PictureWidget representing a building.

void sendBuildingSelected(int indexNumber): Connected to GUI. Tells GUI which of

the buildings were selected.

class BuildingSelectPopup {

public:

 BuildingSelectPopup();
 virtual ~BuildingSelectPopup();

public slots:
 void buildingSelected(QMouseEvent* e, int indexNumber);

signals:
 void sendBuildingSelected(int indexNumber)

class PictureWidget: public QWidget{

public:
//index number is the enumeration of a building type.
PictureWidget(QWidget* parent, const char *name = 0, int indexNumber);
~PictureWidget();

public slots:
 void mouseReleaseEvent(QMouseEvent* e);

signals:
 void mouseReleased(QMouseEvent* e, int indexNumber);

Containment Diagram
 GUI instantiates all window popups in function calls, then relies on the windows
to close (delete) themselves. ImageTextLibrary and GraphicsSubclass are member
variables.

GUI

GraphicsSubclass BulldozePopup

VolumePopup

ImageTextLibrary

StatsPopup

BudgetStatsPopup

BuildingSelectPopup

PropSelectPopup

PictureWidget

