

x–ide

xml Integrated Development Environment
Specifications Document
Colin Hartnett (cphartne) – 7 February 2003

1111 Project DescriptionProject DescriptionProject DescriptionProject Description
There exist many integrated development environments that make large
projects with many interdependent files easy to manage. Currently, there is no
full-featured noncommericial Linux ide for xml (Extensible Markup
Language). Many specialized xml text editors exist, but there is no editor that
incorporates file editing, project management, and testing features.

audience

A relatively robust ide would be warmly welcomed by the xml community at
large. A good local test user base could be found within the Computer Science
Department – specifically, students in cs196–9: Document Engineering.

2222 SpeciSpeciSpeciSpecifififificationscationscationscations
An integrated development environment is a complex program. It is not used
linearly; thus, the specifications will be organized by module.

general description of modules

User Interface – Tools and Windowing.�Provides the window, toolbar, and menu
widgets.

User Interface – Document and Project Visualization.�Produces a collapsible
graphical tree representation of a document or project.

Validating Parser.�A w3c–compliant validating xml parser. Also provides basic

project management document testingtext editing

validating parsergui – windowing and tools gui – document and project visualization

information about documents such as dtd, character encoding, &c.
Text Editing.�Provides text editing capabilities. Handles fancy editing features

such as syntax highlighting and auto indenting.
Project Management. Groups files into projects. Handles organization of files

and saving of projects.
Document Testing. �Allows execution of XPath commands and xslt

transformations.

user interface – tools and windowing

The user interface follows standard wimp protocol and has a menu and
toolbar across the top of the main window.

The main toolbar contains buttons to manipulate single documents.
Buttons are: new, open, save, and validate. A separate project toolbar includes
buttons to save and open projects, add files to and remove files from projects,
sort the project view in various ways, and add project files to ‘soft’ groups.

The body of the window is divided horizontally into three areas: the project
pane, the document pane, and the information pane. The project pane displays
the graphical representation of the current open project. The document pane
is where subwindows containing open documents reside. These documents
can be edited. Windows in the document pane can be arranged in standard
ways: cascade, tile vertically, and tile horizontally. The information pane
contains four main items, all of which should be moveable and resizable: The
element information pane displays information about the current element
(determined by the cursor position). The element list displays a list of all the

menu and toolbar dock

project

management

pane

information pane

Contains moveable and
resizable element list,
attribute list, element
info, and document tree
panes.

document pane

document subwindow

Multiple subwindows can be open. The
data in the information pane
corresponds to the active document.

elements in the specified dtd. The elements that are not valid at the current
position should be ‘greyed out’, that is, displayed in such a way that it is
obvious to the user that they are invalid. The attribute list displays all the valid
attributes of the current element. The document tree shows a tree-like
graphical depiction (outline in next subsection) of the current document.

user interface – document and project visualization

Both documents and projects will be graphically represented as trees much
like those found in common file manager applications. An xml document is a
tree, therefore this module simply takes the parsed document and produces a
tree representation where each node of the tree is an element in the document.
Attributes of elements are represented on a line underneath each element
prefixed with a marker (icon) that indicates the data on that line is an
attribute. The xml document cannot be modified through this tree. (Version 2:
Actually editing the document with the graphical tree.)

Projects are represented by file much like those in a file manager. They can
be sorted by filename, type (dtd) , and character encoding. When a file is
sorted by one of these properties, each unique value is displayed as a folder,
and each file is displayed as a file in that folder. files can also be ‘soft’ grouped,
that is, files can be added to zero, one, or many specialized groups (e.g., a
computer science paper in a project that represents a journal could belong to
both the “computer graphics” and “computational biology” groups). files can
also be sorted by group. When a file is double-clicked, it should be opened in
an editor window.

This module also graphically represents lists of valid elements and
attributes obtained from the parser. These elements should be clickable and
insert the tag into the document at the current cursor position.

validating parser

The parser module needs not only to parse and store an internal representation
of the document, it must also return basic information about the document,
such as its type. The parser must also return information about the document
type. The parser must not die unless a document is not well-formed. In its
internal representation, each node (element or attribute) must include
information on whether it is valid, invalid and not in the dtd, or in the dtd,

but in an invalid position. It must also include basic element data, such as
namespace.

Given a physical point in the document, the parser must be able to return
information obtained from the dtd about the current element consisting of
its namespace, name, datatype, enum values, occurrence, and annotation. The
parser must also be able to return a list of valid elements at the given point.

text editing

The text editing module provides basic text editing capabilities. It also
includes syntax highlighting. Valid tags should be highlighted with one color.
Invalid tags should be highlighted using two different colors: one for tags that
are not anywhere in the dtd and another for tags that are not in a valid
position. Attributes should be highlighted using one color for valid attributes
and another for invalid attributes. Tags should be automatically closed (e.g.,
once I type the “>” in “<foo>”, “</foo>” should be inserted and the cursor
should be placed between the two tags).

project management

This module supports adding and removing files to projects. It must store
basic data about each file including its name, type, encoding, and ‘soft’
groups. It saves projects as xml files. It should also be able to open (with the
help of the parser) any previously saved project files.

document testing

The testing module allows a user to execute XPath expressions and xslt
transformations and view the results as a new xml file in an edit window. This
is relatively straightforward.

3333 Version 2 PossibilitiesVersion 2 PossibilitiesVersion 2 PossibilitiesVersion 2 Possibilities
More automated editing features could and should be added to version 2. In
addition to the aforementioned addition of graphical editing, tools could be
added to reverse engineer a dtd from on a prototype document, and wizards
could be added to assist in creating dtds. Project management could be
fleshed out with features such as extended search and replace. More
technologies could be supported for testing, such as the xml Schema and
relax languages, which are more robust ways of specifying document types,

and the xml Query Language, which allows an xml document to be queried
much like a database.

4444 ImplementationImplementationImplementationImplementation Suggestions Suggestions Suggestions Suggestions
There are good, free implementations of many of the components of this
system. The Apache xml Project provides Xerces, a validating parser, and
Xalan, a stylesheet processor. Both are available in C++ and Java versions.
These components could be used as core elements in the parser and testing
modules.

5555 Nonfunctional RequirementsNonfunctional RequirementsNonfunctional RequirementsNonfunctional Requirements
The goal of any development environment is to increase productivity. This
project should provide an environment that allows users to quickly and easily
work with xml–based projects. This program have the potential to go above
and beyond even powerful text editors like Emacs with its ability to present
multiple perspectives of the document to the developer simultaneously. In
order to enhance productivity, the user interface must be well-designed, the
program must execute quickly, files must open and close quickly, and editing
must be intuitive. These are not concrete, testable concepts, but a general
consensus can be reached by analyzing the performance of commonly used
programs.

6666 Updated RequirUpdated RequirUpdated RequirUpdated Requireeeementsmentsmentsments
The list of basic features was trimmed to a more manageable level. The
requirements are the same in content, but the priorities have been
dramatically adjusted.

user interface

• “Unlimited” open files
• More than one document visible at once
• Collapsible tree representation of project
• Collapsible tree representation of current document
• Lists of elements valid in current position

• Grey out elements not permissible at current position (medium)
• Visually indicate required elements at current position (medium)
• List of attributes for current element (medium)

• Display information obtained from dtd about current element
• Automatically generate dtd from a document (low)
• Wizard-like support for specifying dtds (low)

text editor

• Basic syntax highlighting
• Syntax highlighting based on dtd (medium)
• Smart indenting
• Auto tag completion
• Unlimited undo (medium)
• User-definable macros for tag insertion (low)
• Unicode support (low)

project management

• Group multiple files together in a project
• Save projects in an xml format
• Group files together (medium)

• Files can belong to multiple groups (medium)
• Display files sorted by:

• Name
• Type
• Date modified
• Groups (medium)

testing

• Method of executing XPath expressions
• Return results as xml
• Return results graphically (low)

• Execute xslt transformations (medium)
• Validate against:

• dtd

• xml Schema (low)
• relax (low)

• Realtime validation
• Step-by-step xslt debugging (low)
• Execute xml Queries

7777 Risks and DependenciesRisks and DependenciesRisks and DependenciesRisks and Dependencies
Writing an xml parser is a large task – one that could seriously stall the
project. On the other hand, if the project is implemented using an external
parser and stylesheet processor, a huge external dependency is introduced.
Luckily, xml is a public standard, and most parsers – including Xerces –
implement the dom (Document Object Model), which is simple, robust way of
retrieving information from xml documents. Since the standards and
specifications were written well before any parsers were developed, the
language and protocols are concretely defined and well-documented.

This project would require the members of the team to at least have a basic
knowledge of xml. Those developing the parser and testing modules need to
have a much more intimate knowledge of the language and protocols.

8888 DeDeDeDefifififinitionsnitionsnitionsnitions
xml (Extensible Markup Language) – A markup language that allows users to

represent data in plain text. Its syntax is similar to that of html, but
authors can create their own elements (“tags” in html lingo) and
attributes. Some common uses for xml include representing
mathematical formulae, vector graphics, remote function calls, and
syndicated news feeds.

dtd (Document Type Definition) – A method of specifying the legal structure of
an xml document.

Validating parser – An xml parser that, in addition to parsing and allowing
access to the document, indicates whether or not the document conforms
to its dtd.

XPath (xml Path Language) – A method of selecting information from an xml
document. XPath’s syntax is similar to Unix paths.

xslt (Extensible Stylesheet Language Transformations) – A method of
transforming one xml document into another of a different format.

9999 Further ReadingFurther ReadingFurther ReadingFurther Reading
The official World Wide Web Consortium (w3c) xml site

http://www.w3.org/XML/
The official w3c xsl and xslt site

http://www.w3.org/Style/XSL/

http://www.w3.org/XML/
http://www.w3.org/Style/XSL/

The official w3c XPath site
http://www.w3.org/TR/xpath/

The Apache xml Project
http://xml.apache.org/

http://www.w3.org/TR/xpath/
http://xml.apache.org/

