
Universal Messenger
Design Document

Page : 1

UNIVERSAL MESSENGER : TOP LEVEL DESIGN

REQUIREMENTS :

UM is a chat client that allows the user to send messages to people who use ICQ clients,
AOL Instant Messenger Clients and MSN messenger clients.

Common Features for communicating with all protocols :
• Simple message transfer to buddies– there will be no support for different fonts,

colors, nor support for bold or italicized text.
• Simple message transfer to non buddies.
• In both of the above cases, the user must be able to tell if the message was sent

successfully or not.
• File transfer – Sending files to users of the different chat protocols programs. The

GUI will indicate the progress of the file transfer procedure for the duration of the
transfer –i.e. file size, and “% complete so far”.

• Change Online status : Online, Offline, Away, Busy – other status indicators will
be approximated to these.

• Message history – Any messages sent to or from the user will be stored for future
retreival. These messages can be deleted if need be. The GUI must provide an
interface for viewing old messages.

• Online buddy status– The user should be able to see what the online status of the
buddies on the buddy list are.

• Note - There will be no support for multiple user chats.
ICQ Features:

• Send URL
AOL features :

• The user should be able to warn buddies.
• Warnings and rate limitations – when the user is “warned”, the server sends a

message to the user indicating this. When the warning level reaches some level,
the server limits the number of messages that the user is allowed to send within a
certain time period. This is also a function of the network traffic at that point. The
GUI is required to display a “message not sent” error, and outline that the
problem was related to the rate limit.

MSN features :
• User is typing you a message - Basically the most attractive feature of MSN.

When you are having a chat session in MSN, the GUI is required to display
whether or not, the buddy is in the process of typing a message to the user. Note
that the Protocol Interface must allow for this.

Universal Messenger
Design Document

Page : 2

LEVELIZED COMPONENT DIAGRAM :

MSN
protocol

ICQ
protocol

AOL
protocol

GUI

eCDM

File system

Protocol Interface

Network Wrapper

00
0

1 1 1

2

3

Universal Messenger
Design Document

Page : 3

MODULE DESCRIPTIONS :

ECDM : ESCALATED CYCLIC DEPENDENCY MANAGER –
This is the top level of the program.
It will instantiate the GUI and the Protocol interface components. These two
components will talk to the eCDM through callbacks. The callbacks will be
implemented using the QT signal/Slot mechanism.
The GUI, ECDM and Protocol Interface classes will all run in the same thread.
The individual Protocol classes will run in separate threads.
Important callbacks provided by the ECDM:

GUI: (i.e. the GUI will tell the ECDM this)
- logon
- send message to buddy
- add a buddy
- delete a buddy
- send a file to a buddy
Protocol Interface : (i.e. the Protocol will tell the ECDM these)
- Buddy sends a message to the user
- User is warned by the another user (AOL specific)
- User logon successful/unsuccesful
- User disconnected from server
- Buddy sends file to the user

GUI :
The primary function of the GUI is to provide an interface to the system.
However, this system is heavily driven by the GUI, so system functionality is
dependent on the GUI. Also the success of the project is dependent on how easily
users can relate to the GUI.
Signals to the ECDM :

- ChangeOnlineStatus (between Online/Offline/Not Available/Busy)
- sendMessageToBuddy
- addBuddy
- removeBuddy
- BuddyListRequest
- SendFile

So as not to tie up the GUI while the ECDM is communicating with the network,
the GUI will have “slots” associated the above signals. The ECDM uses these
slots to notify the GUI that these operations are completed.
(Design Note : This allows the GUI the flexibility to block or not block when
waiting for a response. For example, if the GUI emits a “sendMessageToBuddy”
signal, the GUI then has the choice of :
• waiting for a confirmation that the message has been received, in the

meantime holding up the GUI.

Universal Messenger
Design Document

Page : 4

• Allowing the user to send messages to other buddies, and inform the user of
success later, thus not blocking the GUI.

The ECDM and the GUI actually reside in the same thread.

FILE SYSTEM INTERFACE
This system provides the ECDM with a user profile manager. If multiple people
are using the client and do not wish to reenter all their names and passwords
everytime they use the system, they can create a “profile”. A Profile stores the
login name and password of any protocol the user wants it to and also stores a
message history.
Methods that the file system interface must provide:

- createNewProfile : creates a new UM user
- getProfile : Gets the profile of a given user
- GetProfileList : returns a list of all the profiles stored on disk.
- saveMessage : saves messages sent to or from the user to the message

history
- addProtocolLogin : saves protocol login information – user name/login

number/screen name and password
- getMessageList : allows the retrieval of messages stored on disk that

were sent to or from one of the users in the past.
PROTOCOL INTERFACE -

Abstracts out from the ECDM, the protocol specific functionality. The decision of
“which protocol to use” given an event from the user is delegated to the Protocol
Interface.
The Protocol Interface, resides in the same thread as the ECDM. Note that since
this is a layer between the ECDM and a potentially very diverse set of protocols,
this interface will have to be provide for a diverse set of methods. For example
only the ICQ interface has the concept of “authorizing” users to add you to their
buddy list, but we must allow for this in the interface even though only one
protocol uses it.
Methods required by the interface:

- Login
- Logout
- ChangeOnlineStatus – online/Not available/busy
- sendMessageToBuddy
- sendFileToBuddy
- getBuddyList – If the protocol queried stores the buddy list online, and

not locally, then this function will return that buddy list.
- NeedsAuthorization – returns true, if the protocol has an buddy

authorization mechanism.
- RequestAuthorization – Asks the buddy if you can put the buddy on

your buddy list – (ICQ specific)

Design discussion :
The main justification for the existence of this layer, is to insulate the ECDM from
interfacing with the protocols.

Universal Messenger
Design Document

Page : 5

The design team was faced with a choice to either place the protocol classes all in
one thread, or allow each protocol class to run in separate threads.
Demoting this functionality by creating the Protocol Interface class, allows us to
have a working eCDM that is uncontroversial in design. It lets us, if needed,
replace the Protocol Interface class with other implementations, to compare how
well each implementation works without affecting the interaction of the ECDM
with the GUI and the file system interface.

MSN/ICQ/AOL PROTOCOLS
The heart and soul of the program, the protocol classes will communicate with the
appropriate servers (and sometimes buddies directly) to provide the functionality
promised in the requirements. The protocols will all by subclasses of an abstract
base class, by which the Protocol Interface will refer to them.

The methods provided by the protocol interface(login,logout etc..) would
call corresponding functions in the individual protocols.
Also the protocols will to communicate up to the ECDM, signals such as:

- MessageReceivedFromBuddy
- FileReceivedFromBuddy
- Login successful
- Login unsuccessful
- Message send successful
- Message send failed.
- DisconnectedFromServer
- BuddyStatusChanged

NETWORK WRAPPER :
Provides a wrapper around the network so that any operating system specific
details are hidden from the Protocol classes and the rest of the program.

Universal Messenger
Design Document

Page : 6

GROUP ORGANIZATION

Name (Sun lab login) – role
Aaron (agabow) – Program Manager :

Ensures the project runs on schedule and smoothly and the group members are
aware of class related deadlines.

Audrey (syau) – MSN (Microsoft Network) protocol specialist :
Will create a library that is capable of communicating with MSN servers to
capture the functionality outlined in the UM network interface.

Jason (jahuang) – System Integrity : System Tester
Will make sure the program is bug free and robust by employing a variety of
testing techniques outlined below.

Jon (jdmartin)– ECDM development :
Will implement the ECDM, the “main” component of the program. Details of the
ECDM are given below.

Marco(mds) - AIM (America Online Instant Messenger) protocol specialist:
Will create a library that is capable of communicating with AIM servers to
capture the functionality outlined in the UM network interface.

Nick (jmoy) - ICQ protocol specialist :
Will create a library that is capable of communicating with ICQ servers to capture
the functionality outlined in the UM network interface.

Nigel(ncordeir)– File system interface developer :
Will create the subsystem that creates, manages and stores user profiles, and
keeps track of the message history

Shams (mkazi) - Program Architect a.k.a. Archie
Ensures integrity of the design and coding of the system, and ensures that the
project’s technological objects are met. The coder of last resort.

Shiwon (Shchoe) – User Interface Development Lead
Will implement the interface between the user and the chatting system. The GUI
drives the system.

Wolfgang – Network Lead
Will implement the layer between the ECDM and the protocol specific network
classes. Also the network layer (layer on top of the network sockets themselves).
Will also be responsible for the progress of the development of the protocol
classes.

Yazan - Editor
Develops the documentation of the project, including user and technical
documentation. The technical documentation aids the future maintainability of
the project.

Universal Messenger
Design Document

Page : 7

EXTERNAL DEPENDENCIES

• Qt – Apart from our GUI being implemented in QT, we will be using some non-GUI
QT functionality in particular callbacks (signals/slots) and file representation (QFile).
We justify this by the fact that QT is a portable interface, and can compile under a
variety of platforms. It is important to note however, that even if the GUI is replaced
QT libraries will be needed to compile the program.

• The ICQ/MSN/AOL IM servers are completely out of our control and information
about the future direction of these servers is unavailable. However we are fairly
confident that any new improvements to the servers will still leave the server
backwards compatible with their older clients hence compatible with our system.

• Licensing issues do not exist given this project is being attempted for academic
purposes and not for profit.

Universal Messenger
Design Document

Page : 8

TESTING :

1)Component Testing –
Includes rigorous testing of individual component driven by test code that calls all
methods in each component individually to check for functionality, limitations and
performance.
Steps Include:
-Making sure that all components and methods have been created and can be compiled
and called to return dummy values
-Checking for appropriate output from methods. Also checking for upper and lower limits
and error messages etc. (e.g. buddy list limitations, message lengths, missing messages
(sending a message before logging onto an ICQ server), etc.)
-Testing each class for integrity, memory usage, performance, possible code reviews at
this point. (e.g. Does each method do what it should do? Should it do less? More? Can
stuff be broken up or combined?)
-Test components for integrity, memory usage, dependencies, adherence to the spec and
design docs. (e.g. review design diagrams and stated dependencies and interface, check if
components match design and meet requirements)
2)Integration Testing –
- Ensuring that components are communicating with each other correctly, through
established interfaces.
 Steps Include:
- Testing 2 components together for functionality using test code to fill in any missing
components necessary for tests (dummy UI to send input and output to protocol
components, and dummy Protocol Interface class, to test the UI)
- Testing more than 2 components together. Separate components should have been
rigorously tested at this point.

3)User Testing
- Running the program through the GUI to crash the system. Tests repeat many of the
tests before. Steps Include: -Bounds and Limit testing through user input. (e.g. large
buddy list again etc.)
-Sanity check on input/output through GUI. (e.g. the GUI doesn't allow bad i/o)
-Running multiple instances of UM on the same machine connecting to a server both
using the same protocol to communicate and using different protocols (e.g. ICQ to ICQ
messaging or ICQ to AIM messaging)
-Running multiple instances of UM on different machines
-Running UM on a Sun and original ICQ/AIM/MSN clients on a Sun then a Windows
box outside of the SunLab
-Running UM on a Sun and multiple ICQ/AIM/MSN clients in addition to other
"universal messaging" clients (e.g. jabber, Odigo or whatever it's called)

Strategies
-developing testing tools before components are completed (e.g. random string generation
etc)
-listing out the possible limits of the program and how one can break them, then fix them.

Universal Messenger
Design Document

Page : 9

-brainstorming all possible test cases and scenerios (e.g. What happens if off by one bug
happens here, how much will it affect the rest of the program? Will it completely crash?
Or will just a single ICQ message be lost?)
-figuring out where the most important dependencies are, so they can be more carefully
tested. -reviewing .h files and interface for changes and potential weak areas
- Memory perturbation – technique that disturbs memory not allocated, to make sure we
are not accessing memory we are not supposed to.

(The more creative stuff)
-Offer free food to people in the SunLab to test out UM for 30 minutes at a time and have
them report bugs. Possibly setup some stupid contest of sorts to lure beta testers (such as
stressed out CS32 students that would rather chat than work on their final project design
;)
-Have the coders of different components read the code of their counterparts and ask
questions along the lines of "Why is this done in such and such a way? As opposed to
such and such a way?" (e.g. have the GUI coders read, understand and question the
protocol code)

Culture :
Our group is awesome, and our project is cool, and that makes development fun. Apart
from this however :
The Program Architect will bring food to any meetings.
The group is commissioning the design of a UM logo to build group identity.

Universal Messenger
Design Document

Page : 10

SCHEDULE

*****Key date : April 16th Integration******
Week 1&2 :

Friday February 23th – Friday March 9th

Group roster finalized by end of week 1.
Protocol groups : Review description of how each protocol implements :
Logon, Message transfer, file transfer. Identify potential problems and obstacles
not apparent before. Outline procedures you need others to write.
HANDIN : MARCH 9 : FINALIZED DESIGN DOCUMENT

Week 3 :
Friday March 9th – Wednesday March 14th

GUI Team : Create detailed pictures/drawings of every screen and decide on GUI
tools to be used.
Discuss and debate interface issues
Protocol groups: Initiate communication with your servers, start experimenting
with logon routines
GUI Team : Create Main Buddy Window
We must have compilable level 0 interfaces, and potentially other interfaces.
HANDIN : MARCH 14TH : INTERFACE PROPOSALS , COMPONENT
WISE TESTING STRATEGY

Week 4 :
Wednesday March 14th – Monday March 19st Finalize Interface!!
HANDIN : MARCH 19th INTERFACE COMPONENTS
HANDIN : March 23rd : Fully compilable Interfaces, Design Document***

Week 5 : March 19th – March 23rd - :
Protocol and GUI team : Finish detailed design if you want to enjoy spring
break. We must absolutely start coding like crazy as soon as we come back.

SPRING BREAK MARCH 23rd – April 4th

HANDIN : April 4th Detailed Designs
Week 6 and 7 :

April 4th – April 15th
Developers : All the coding must be finished – see that task list for plan of
action
Component testing

Week 8:
April 16th : INTEGRATION
Integration testing

Week 9 :
System and User Testing
April 23rd Code review : Print out your code for the world to see!!
April 27 DEMO DAY (In class)

Week 10 :
May 2nd – DEMO DAY II (World Demo Day)

Week 11 :
HANDIN : May 11th Final Documentation

Universal Messenger
Design Document

Page : 11

Project Task list:
This gives a plan of how to approach each task

GUI development :
March 12th Rough outline of Header files
March 14th Finalize look and feel by creating diagrams of all screens
Design main screen, with buddies and their online status’ shown
Be able to display messages that have been received
Be able to send messages
Display file sending/receiving progress charts
Implement the File system GUI, and allow the user to view message history
Display errors from network
Allow AOL users to warn buddies
MSN user “typing a message” indicator

Network development :
March 12th Outline of Header files
March 15th finalize interfaces
March 16 – Design Network Wrapper and Protocol Interface
Logon process
View buddies online
Receive messages from buddies
Send messages to buddies
Receive files from buddies
Send files to buddies
Send/Receive URL from buddies (ICQ)
Warning level feature implementation (AOL)
User typing a message feature (MSN)

ECDM development :
March 12th Outline of Header files
March 15th Finalize interfaces
Logon process.
Buddy list creation
Changing online status
Transfer of information(messages/files) from network to GUI
Transfer of information(messages/files) form GUI to network

File system Development :
March 12th Outline of Header files
March 15th Finalize interfaces
Creating/deleting User Profiles
Storing user names/passwords
Saving messages to the history
Deleting messages from the history
Retrieval of messages

Universal Messenger
Design Document

Page : 12

Testing :
March 15th march 23th– Review Header files, and design component tests
Unit testing – April 11th-April 16th

Integration testing – April 16st – April 28th
System and User testing.

